- 2021-05-13 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019届高考数学一轮复习 专题 独立性检验学案(无答案)文
独立性检验 学习目标 【课前自主复习区】了解独立性检验(只要求2×2列联表)的基本思想及初步应用 【课堂互动探究区】 一:独立性检验及其应用 二:独立性检验与其它统计知识交汇 重难点 理解独立性检验的基本思想及实施步骤 合作探究 课堂设计 学生随堂手记 【课前自主复习区】 独立性检验的思想 1.分类变量:变量的不同“值”表示个体所属的不同类别的变量称为分类变量. 分类变量的取值一定是离散的,而且不同的取值仅表示个体所属的类别,如性别变量,只取男、女两个值,商品的等级变量只取一级、二级、三级,等等. 分类变量的取值有时可用数字来表示但这时的数字除了分类以外没有其他的含义. 如用“0”表示“男”,用“1”表示“女”. 2.类似于反证法,要判断“两个分类变量有关系”,首先假设该结论不成立,即 :两个分类变量没有关系 成立. 在该假设下我们所构造的随机变量应该很小. 如果由观测数据计算得到的的观测值很大,则断言不成立,即认为“两个分类变量有关系”; 怎样判断观测值是大还是小呢?这仅需确定一个正数,当时就认为的观测值大. 此时相应于的判断规则为:如果,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”. 我们称这样的为一个判断规则的临界值. 按照上述规则,有 两种说法:①在犯错误的概率不超过 的前提下,认为两个分类变量有关; ②有1- 的把握认为两个分类变量有关. 上面这种利用随机变量来判断“两个分类变量有关系”的方法称为独立性检验. 附:(1)2×2列联表:假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称2×2列联表)为: y1 y2 总计 x1 a b a+b x2 c d c+d 总计 a+c b+d a+b+c+d 8 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828 (2)K2统计量 K2=(其中n=a+b+c+d为样本容量). 【双基自测】 1.下面是一个2×2列联表 y1 y2 总计 x1 a 21 73 x2 2 25 27 总计 b 46 n 则表中a、b、n处的值分别为________ . 2.某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K2=7.069,则所得到的统计学结论是:有多少的把握认为“学生性别与支持该活动有关系”.( ) 附: P(K2≥k0) 0.100 0.050 0.025 0.010 0.001 k0 2.706 3.841 5.024 6.635 10.828 A.0.1% B.1% C.99% D.99.9% 3.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表: 男 女 合计 爱好 40 20 60 不爱好 20 30 50 合计 60 50 110 由K2=, 算得K2=≈7.8. 附表: 8 P(K2≥k0) 0.050 0.010 0.001 k0 3.841 6.635 10.828 参照附表,得到的正确结论是( ) A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” C.有99%以上的把握认为“爱好该项运动与性别有关” D.有99%以上的把握认为“爱好该项运动与性别无关” 【课堂互动探究区】 【例1】 (2010新课标全国文理19) 为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了位老人,结果如下: 男 女 需要 40 30 不需要 160 270 (Ⅰ)估计该地区老年人中,需要志愿者提供帮助的老年人的比例; (Ⅱ)能否有的把握认为该地区的老年人是否需要志愿者提供帮助与性别相关? (Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助老年人的比例?请说明理由. 附: 0.050 0.010 0.001 3.841 6.635 10.828 8 【规律总结】: 独立性检验的一般步骤 (1)根据样本数据制成2×2列联表; (2)根据公式K2=计算K2的值; (3)查表比较K2与临界值的大小关系,作出统计判断. 【例2】(2017全国二理18文19)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比学|,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg)某频率分布直方图如下: P(错误!未找到引用源。) 0.050 0.010 0.001 k 3.841 6.635 10.828 (1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率. (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关: 箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法 (3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01) 8 【对点训练】 【我会做】1.(2017·广东省六校联考)某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为. 优秀 非优秀 合计 甲班 10 乙班 30 合计 110 (1)请完成上面的列联表; (2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”. 参考公式与临界值表:K2=. P(K2≥k0) 0.100 0.050 0.025 0.010 0.001 k0 2.706 3.841 5.024 6.635 10.828 8 ★【我能做对】2.(2017·云南省第一次统一检测)某校高二年级共有1 600名学生,其中男生960名,女生640名.该校组织了一次满分为100分的数学学业水平模拟考试.根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A等(优秀),在[60,80)的学生可取得B等(良好),在[40,60)的学生可取得C等(合格),不到40分的学生只能取得D等(不合格).为研究这次考试成绩优秀是否与性别有关,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成如图所示的频率分布直方图. (1)估计该校高二年级学生在正式的数学学业水平考试中成绩不合格的人数; (2)请你根据已知条件将下列2×2列联表补充完整.并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”? 数学成绩优秀 数学成绩不优秀 合计 男生 a=12 b= 女生 c= d=34 合计 n=100 ★★【我要挑战】3.(2017·九江第一次统考)某校数学课外兴趣小 8 组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在40分以下的学生后,共有男生300名, 女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表. 分数段 [40,50) [50,60) [60,70) [70,80) [80,90) [90,100] 男 3 9 18 15 6 9 女 6 4 5 10 13 2 (1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关; (2)规定80分以上为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”. 优分 非优分 合计 男生 女生 合计 100 【课后分层巩固区】 1.某学生对其亲属30人的饮食习惯进行了一次调查, 8 并用下图所示的茎叶图表示30人的饮食指数(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主). (1)根据以上数据完成下列2×2列联表. 主食蔬菜 主食肉类 合计 50岁以下 50岁以上 合计 (2)能否有99%的把握认为其亲属的饮食习惯与年龄有关?并写出简要分析. ★2.已知某班n名同学的数学测试成绩(单位:分,满分100分)的频率分布直方图如图所示,其中a,b,c成等差数列,且成绩在[90,100]内的有6人. (1)求n的值; (2)规定60分以下为不及格,若不及格的人中女生有4人,而及格的人中,男生比女生少4人,借助独立性检验分析是否有90%的把握认为“本次测试的及格情况与性别有关”? 附: P(K2≥k0) 0.10 0.05 0.010 0.005 k0 2.706 3.841 6.635 7.879 K2=,n=a+b+c+d 8查看更多