2018版高考文科数学(北师大版)一轮文档讲义:章9-7双曲线
第7讲 双曲线
最新考纲 了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).
知 识 梳 理
1.双曲线的定义
我们把平面内到两定点F1,F2的距离之差的绝对值等于常数(大于零且小于|F1F2|)的点的集合叫作双曲线.定点F1,F2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距.
集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:
(1)若a
c时,则集合P为空集.
2.双曲线的标准方程和几何性质
标准方程
-=1
(a>0,b>0)
-=1
(a>0,b>0)
图 形
续表
性 质
范围
x≥a或x≤-a,y∈R
x∈R,y≤-a或y≥a
对称性
对称轴:坐标轴;对称中心:原点
顶点
A1(-a,0),A2(a,0)
A1(0,-a),A2(0,a)
渐近线
y=±x
y=±x
离心率
e=,e∈(1,+∞)
实虚轴
线段A1A2叫作双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫作双曲线的虚轴,它的长|B1B2|=2b;a叫作双曲线的实半轴长,b叫作双曲线的虚半轴长
a,b,c的关系
c2=a2+b2
诊 断 自 测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )
(2)平面内到点F1(0,4),F2(0,-4)距离之差等于6的点的轨迹是双曲线.( )
(3)方程-=1(mn>0)表示焦点在x轴上的双曲线.( )
(4)双曲线方程-=λ(m>0,n>0,λ≠0)的渐近线方程是-=0,即±=0.( )
(5)等轴双曲线的渐近线互相垂直,离心率等于.( )
解析 (1)因为||MF1|-|MF2||=8=|F1F2|,表示的轨迹为两条射线.
(2)由双曲线的定义知,应为双曲线的一支,而非双曲线的全部.
(3)当m>0,n>0时表示焦点在x轴上的双曲线,而m<0,n<0时则表示焦点在y
轴上的双曲线.
答案 (1)× (2)× (3)× (4)√ (5)√
2.(2016·全国Ⅰ卷)已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )
A.(-1,3) B.(-1,)
C.(0,3) D.(0,)
解析 ∵方程-=1表示双曲线,∴(m2+n)·(3m2-n)>0,解得-m20),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
解析
由双曲线-=1(b>0)知其渐近线方程为y=±x,
又圆的方程为x2+y2=4,①
不妨设渐近线与圆在第一象限的交点为B,将y=x代入方程①式,
可得点B.
由双曲线和圆的对称性得四边形ABCD为矩形,其相邻两边长为,,故=2b,得b2=12.
故双曲线的方程为-=1.
答案 D
[思想方法]
1.与双曲线-=1 (a>0,b>0)有公共渐近线的双曲线的方程可设为-=t (t≠0).
2.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程-=0就是双曲线-=1 (a>0,b>0)的两条渐近线方程.
[易错防范]
1.双曲线方程中c2=a2+b2,说明双曲线方程中c最大,解决双曲线问题时不要忽视了这个结论,不要与椭圆中的知识相混淆.
2.求双曲线离心率及其范围时,不要忽略了双曲线的离心率的取值范围是(1,+∞)这个前提条件,否则很容易产生增解或扩大所求离心率的取值范围致错.
3.双曲线-=1 (a>0,b>0)的渐近线方程是y=±x,-=1 (a>0,b>0)的渐近线方程是y=±x.
4.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.
基础巩固题组
(建议用时:40分钟)
一、选择题
1.(2017·郑州模拟)设双曲线-=1(a>0,b>0)的虚轴长为2,焦距为2,则双曲线的渐近线方程为( )
A.y=±x B.y=±x
C.y=±x D.y=±2x
解析 因为2b=2,所以b=1,因为2c=2,所以c=,所以a==,所以双曲线的渐近线方程为y=±x=±x,故选B.
答案 B
2.(2015·广东卷)已知双曲线C:-=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
解析 因为所求双曲线的右焦点为F2(5,0)且离心率为e==,所以c=5,a=4,b2=c2
-a2=9,所以所求双曲线方程为-=1,故选C.
答案 C
3.(2017·山西省四校联考)已知双曲线C:-=1(a>0,b>0),右焦点F到渐近线的距离为2,点F到原点的距离为3,则双曲线C的离心率e为( )
A. B. C. D.
解析 ∵右焦点F到渐近线的距离为2,∴F(c,0)到y=x的距离为2,即=2,又b>0,c>0,a2+b2=c2,∴=b=2,又∵点F到原点的距离为3,∴c=3,∴a==,∴离心率e===.
答案 B
4.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos ∠F1PF2=( )
A. B.
C. D.
解析 由x2-y2=2,知a=b=,c=2.
由双曲线定义,|PF1|-|PF2|=2a=2,
又|PF1|=2|PF2|,
∴|PF1|=4,|PF2|=2,
在△PF1F2中,|F1F2|=2c=4,由余弦定理,得
cos ∠F1PF2==.
答案 C
5.(2017·成都诊断)过双曲线x2-=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|=( )
A. B.2 C.6 D.4
解析 由题意知,双曲线x2-=1的渐近线方程为y=±x,将x=c=2代入得y=±2,即A,B两点的坐标分别为(2,2),(2,-2),所以|AB|=4.
答案 D
二、填空题
6.(2016·江苏卷)在平面直角坐标系xOy中,双曲线-=1的焦距是________.
解析 由已知,得a2=7,b2=3,则c2=7+3=10,故焦距为2c=2.
答案 2
7.(2016·北京卷)双曲线-=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则a=________.
解析
取B为双曲线右焦点,如图所示.∵四边形OABC为正方形且边长为2,∴c=|OB|=2,
又∠AOB=,
∴=tan=1,即a=b.
又a2+b2=c2=8,∴a=2.
答案 2
8.(2016·山东卷)已知双曲线E:-=1(a>0,b>0).若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是________.
解析 由已知得|AB|=,|BC|=2c,∴2×=3×2c.
又∵b2=c2-a2,整理得:2c2-3ac-2a2=0,两边同除以a2得22-3-2=0,即2e2-3e-2=0,解得e=2或e=-1(舍去).
答案 2
三、解答题
9.(2017·安徽江南十校联考)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点P(4,-).
(1)求双曲线的方程;
(2)若点M(3,m)在双曲线上,求证:·=0.
(1)解 ∵e=,
∴可设双曲线的方程为x2-y2=λ(λ≠0).
∵双曲线过点(4,-),∴16-10=λ,即λ=6.
∴双曲线的方程为x2-y2=6.
(2)证明 法一 由(1)可知,a=b=,
∴c=2,∴F1(-2,0),F2(2,0),
∴kMF1=,kMF2=,
kMF1·kMF2==-.
∵点M(3,m)在双曲线上,∴9-m2=6,m2=3,
故kMF1·kMF2=-1,∴MF1⊥MF2.∴·=0.
法二 由(1)可知,a=b=,∴c=2,
∴F1(-2,0),F2(2,0),
=(-2-3,-m),=(2-3,-m),
∴·=(3+2)×(3-2)+m2=-3+m2,
∵点M(3,0)在双曲线上,∴9-m2=6,即m2-3=0,
∴·=0.
10.已知椭圆C1的方程为+y2=1,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+与双曲线C2恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.
解 (1)设双曲线C2的方程为-=1(a>0,b>0),
则a2=3,c2=4,再由a2+b2=c2,得b2=1.
故C2的方程为-y2=1.
(2)将y=kx+代入-y2=1,
得(1-3k2)x2-6kx-9=0.
由直线l与双曲线C2交于不同的两点,得
∴k2≠且k2<1.①
设A(x1,y1),B(x2,y2),
则x1+x2=,x1x2=-.
∴x1x2+y1y2=x1x2+(kx1+)(kx2+)
=(k2+1)x1x2+k(x1+x2)+2=.
又∵·>2,得x1x2+y1y2>2,
∴>2,即>0,解得<k2<3.②
由①②得<k2<1,
故k的取值范围为∪.
能力提升题组
(建议用时:20分钟)
11.过双曲线C:-=1(a>0,b>0)的右顶点作x轴的垂线,与C的一条渐近线相交于点A.若以C的右焦点为圆心、半径为4的圆经过A,O两点(O为坐标原点),则双曲线C的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
解析 由双曲线方程知右顶点为(a,0),不妨设其中一条渐近线方程为y=x,因此可得点A的坐标为(a,b).
设右焦点为F(c,0),由已知可知c=4,且|AF|=4,即(c-a)2+b2=16,所以有(c-a)2+b2=c2,又c2=a2+b2,则c=2a,即a==2,所以b2=c2-a2=42-22=12.故双曲线的方程为-=1,故选A.
答案 A
12.若双曲线-=1(a>0,b>0)上存在一点P满足以|OP|为边长的正方形的面积等于2ab(其中O为坐标原点),则双曲线的离心率的取值范围是( )
A. B.
C. D.
解析 由条件,得|OP|2=2ab,又P为双曲线上一点,从而|OP|≥a,∴2ab≥a2,∴2b≥a,又∵c2=a2+b2≥a2+=a2,∴e=≥.
答案 C
13.(2016·浙江卷)设双曲线x2-=1的左、右焦点分别为F1,F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是________.
解析
如图,由已知可得a=1,b=,c=2,从而|F1F2|=4,由对称性不妨设点P在右支上,设|PF2|=m,则|PF1|=m+2a=m+2,
由于△PF1F2为锐角三角形,
结合实际意义需满足
解得-1+<m<3,
又|PF1|+|PF2|=2m+2,
∴2<2m+2<8.
答案 (2,8)
14.已知双曲线-=1(a>0,b>0)的一条渐近线方程为2x+y=0,且顶点到渐近线的距离为.
(1)求此双曲线的方程;
(2)设P为双曲线上一点,A,B两点在双曲线的渐近线上,且分别位于第一、二象限,若A=P,求△AOB的面积.
解 (1)依题意得解得
故双曲线的方程为-x2=1.
(2)由(1)知双曲线的渐近线方程为y=±2x,设A(m,2m),B(-n,2n),其中m>0,n>0,由A=P得点P的坐标为.
将点P的坐标代入-x2=1,
整理得mn=1.
设∠AOB=2θ,
∵tan=2,
则tan θ=,从而sin 2θ=.
又|OA|=m,|OB|=n,
∴S△AOB=|OA||OB|sin 2θ=2mn=2.
特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.