- 2021-05-13 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学立体几何试题汇编
2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为 A. B. C. D.2 18.如图,在平行四边形中,,,以为折痕将△折起,使点到达点的位置,且. (1)证明:平面平面; (2)为线段上一点,为线段上一点,且,求三棱锥的体积. 全国1卷理科 理科第7小题同文科第9小题 18. 如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且. (1)证明:平面平面; (2)求与平面所成角的正弦值. 全国2卷理科: 9.在长方体中,,,则异面直线与所成角的余弦值为 A. B. C. D. 20.如图,在三棱锥中,,,为的中点. (1)证明:平面; 4 (2)若点在棱上,且二面角为,求与平面所成角的正弦值. 全国3卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12分) 如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点. (1)证明:平面平面; (2)当三棱锥体积最大时,求面与面所成二面角的正弦值. 2018年江苏理科: 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ . 4 15.(本小题满分14分) 在平行六面体中,. 求证:(1); (2). 2018年北京: (5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A)1 (B)2 (C)3 (D)4 (16)(本小题14分)如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2. (Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交. 2018年浙江: 3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是 A.2 B.4 C.6 D.8 4 19.(本题满分15分)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2. (Ⅰ)证明:AB1⊥平面A1B1C1; (Ⅱ)求直线AC1与平面ABB1所成的角的正弦值. 2018年上海 17.已知圆锥的顶点为,底面圆心为,半轻为 1.设圆锥的母线长为,求圆锥的体积 2.设是底面半径,且,为线段的中点,如图,求异面直线与所成的角的大小 4查看更多