- 2021-05-13 发布 |
- 37.5 KB |
- 30页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
内蒙古兴安盟中考数学试卷a卷含答案解析版
2017年内蒙古兴安盟中考数学试卷(A卷) 一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分) 1.(3分)(2017•兴安盟)2的相反数是( ) A.2 B.-2 C.±2 D.-2 2.(3分)(2017•兴安盟)某几何体的三视图如图所示,则该几何体是( ) A.圆柱 B.圆锥 C.三棱锥 D.三棱柱 3.(3分)(2017•兴安盟)下列各式计算正确的是( ) A.3x+x=4x2 B.(﹣a)2•a6=﹣a8 C.(﹣y)3÷(﹣y)=y2(y≠0) D.(a2b3c)2=a4b6c 4.(3分)(2017•兴安盟)下列长度的三条线段能组成锐角三角形的是( ) A.6,8,8 B.6,8,10 C.6,8,12 D.6,8,14 5.(3分)(2017•兴安盟)纳米技术是一种高新技术,纳米是非常小的长度单位,1纳米等于0.000000001米,将1纳米用科学记数法表示为( ) A.10﹣7米 B.10﹣8米 C.10﹣9米 D.10﹣10 米 6.(3分)(2017•兴安盟)如图,在⊙O中,OA⊥BC,∠AOB=48°,D为⊙O上一点,则∠ADC的度数是( ) A.24° B.42° C.48° D.12° 第30页(共30页) 7.(3分)(2017•兴安盟)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的鞋销售量如下表: 尺码/厘米 22 22.5 23 23.5 24 24.5 25 销售量/双 1 2 5 11 7 3 1 鞋店老板比较关注哪种尺码的鞋最畅销,也就是关注卖出鞋的尺码组成一组数据的( ) A.平均数 B.中位数 C.众数 D.方差 8.(3分)(2017•兴安盟)一元二次方程16x2﹣8x+1=0的根的情况是( ) A.有两个不相等的实数根 B.没有实数根 C.只有一个实数根 D.有两个相等的实数根 9.(3分)(2017•兴安盟)下列命题正确的是( ) A.对角线互相垂直的四边形是菱形 B.对角线互相垂直的平行四边形是正方形 C.对角线相等的四边形是矩形 D.对角线相等的菱形是正方形 10.(3分)(2017•兴安盟)甲、乙两人匀速在400米环形跑道上跑步,同时同地出发,如果相向而行,每隔1分钟相遇一次;如果同向而行,每隔5分钟相遇一次,已知甲比乙的速度快.设甲每分钟跑x米,乙每分钟跑y米,根据题意,列出方程组正确的是( ) A.&60x+60y=400&300x-300y=400 B.&x+y=400&5x-5y=400 C.&60x+60y=400&300y-300x=400 D.&x+y=400&5y-5x=400 11.(3分)(2017•兴安盟)下列关于反比例函数y=-3x的说法正确的是( ) A.y随x的增大而增大 B.函数图象过点(2,32) C.图象位于第一、第三象限 D.x>0时,y随x的增大而增大 12.(3分)(2017•兴安盟)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是AB、BC边上的动点,则AE+DE的最小值为( ) 第30页(共30页) A.485 B.245 C.5 D.125 二、填空题(共5小题,每小题3分,满分15分) 13.(3分)(2017•兴安盟)分解因式:2a3﹣8a= . 14.(3分)(2017•兴安盟)如图,以正六边形ABCDEF的中心为坐标原点建立平面直角坐标系,顶点C、F在x轴上,顶点A的坐标为(1,3),则顶点D的坐标为 . 15.(3分)(2017•兴安盟)计算:45°39′+65°41′= . 16.(3分)(2017•兴安盟)一组数据5,2,x,6,4的平均数是4,这组数据的方差是 . 17.(3分)(2017•兴安盟)如图,下列各图中的三个数之间具有相同规律.依此规律用含m,n的代数式表示y,则y= . 三、解答题(本题4个小题,每小题6分,共24分) 18.(6分)(2017•兴安盟)计算:55﹣|2﹣5|+(﹣2)﹣2﹣(π﹣3.14)0. 19.(6分)(2017•兴安盟)先化简,再求值:a(a﹣2b)﹣(a+b)(a﹣b),其中a=12,b=﹣1. 第30页(共30页) 20.(6分)(2017•兴安盟)如图,在平面直角坐标系中,抛物线的顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0). (1)写出C点的坐标,并求出抛物线的解析式; (2)观察图象直接写出函数值为正数时,自变量的取值范围. 21.(6分)(2017•兴安盟)甲袋中装有4个相同的小球,分别标有3,4,5,6;乙袋中装有3个相同的小球,分别标有7,8,9.芳芳和明明用摸球记数的方法在如图所示的正六边形ABCDEF的边上做游戏,游戏规则为:游戏者从口袋中随机摸出一个小球,小球上的数字是几,就从顶点A按顺时针方向连续跳动几个边长,跳回起点者获胜;芳芳只从甲袋中摸出一个小球,明明先后从甲、乙口袋中各摸出一个小球.如:先后摸出标有4和7的小球,就先从点A按顺时针连跳4个边长,跳到点E,再从点E顺时针连跳7个边长,跳到点F. 分别求出芳芳、明明跳回起点A的概率,并指出游戏规则是否公平. 四、(本题7分) 22.(7分)(2017•兴安盟)如图,在平行四边形ABCD中,AD>AB. (1)作∠BAD的平分线交BC于点E,在AD边上截取AF=AB,连接EF(要求:尺规作图,保留作图痕迹,不写作法); (2)判断四边形ABEF的形状,并说明理由. 第30页(共30页) 五、(本题7分) 23.(7分)(2017•兴安盟)为了了解某中学学生的身高情况,随机对该校男、女生的身高进行抽样调查.抽取的样本中,男、女生的人数相同,根据所得数据绘制成如图所示的统计图表. 组别 男女生身高(cm) A 150≤x<155 B 155≤x<160 C 160≤x<165 D 165≤x<170 E 170≤x<175 根据图表中提供的信息,回答下列问题: (1)在样本中,男生身高的中位数落在 组(填组别序号),女生身高在B组的 有 人; (2)在样本中,身高在170≤x<175之间的共有 人,人数最多的是 组(填组别序号) (3)已知该校共有男生500人,女生480人,请估计身高在160≤x<170之间的学生有多少人? 第30页(共30页) 六、(本题8分) 24.(8分)(2017•兴安盟)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC. (1)求证:AC是⊙O的切线; (2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π) 七、(本题10分) 25.(10分)(2017•兴安盟)某车行经销的A型自行车去年6月份销售总额为1.6万元,今年由于改造升级每辆车售价比去年增加200元,今年6月份与去年同期相比,销售数量相同,销售总额增加25%. (1)求今年A型车每辆售价多少元? (2)该车行计划7月份用不超过4.3万元的资金新进一批A型车和B型车共50辆,应如何进货才能使这批车售完后获利最多? 今年A,B两种型号车的进价和售价如下表: A型车 B型车 进价(元/辆) 800 950 售价(元/辆) 今年售价 1200 八、(本题13分) 26.(13分)(2017•兴安盟)如图1,在△ABC中,∠ACB=90°,∠B=30°,AC=4,D是AB的中点,EF是△ACD的中位线,矩形EFGH的顶点都在△ACD的边上. (1)求线段EF、FG的长; (2)如图2,将矩形EFGH沿AB向右平移,点F落在BC上时停止移动,设矩形移动的距离为x,矩形与△CBD重叠部分的面积为S,求出S关于x的函数解析式; 第30页(共30页) (3)如图3,矩形EFGH平移停止后,再绕点G按顺时针方向旋转,当点H落在CD边上时停止旋转,此时矩形记作E1F1GH1,设旋转角为α,求cosα的值. 第30页(共30页) 2017年内蒙古兴安盟中考数学试卷(A卷) 参考答案与试题解析 一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分) 1.(3分)(2017•兴安盟)2的相反数是( ) A.2 B.-2 C.±2 D.-2 【考点】28:实数的性质;21:平方根;22:算术平方根. 【分析】一个数的相反数就是在这个数前面添上“﹣”号. 【解答】解:2的相反数是﹣2. 故选B. 【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 2.(3分)(2017•兴安盟)某几何体的三视图如图所示,则该几何体是( ) A.圆柱 B.圆锥 C.三棱锥 D.三棱柱 【考点】U3:由三视图判断几何体. 【分析】根据三视图得出几何体即可. 【解答】解:由主视图和左视图都为三角形,而俯视图是圆,可得几何体是圆锥, 故选B 【点评】本题考查了圆锥的三视图,关键是根据三视图得出几何体. 3.(3分)(2017•兴安盟)下列各式计算正确的是( ) 第30页(共30页) A.3x+x=4x2 B.(﹣a)2•a6=﹣a8 C.(﹣y)3÷(﹣y)=y2(y≠0) D.(a2b3c)2=a4b6c 【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方. 【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算分别判断得出答案. 【解答】解:A、3x+x=4x,故此选项错误; B、(﹣a)2•a6=a8,故此选项错误; C、(﹣y)3÷(﹣y)=y2(y≠0),故此选项正确; D、(a2b3c)2=a4b6c2,故此选项错误; 故选:C. 【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键. 4.(3分)(2017•兴安盟)下列长度的三条线段能组成锐角三角形的是( ) A.6,8,8 B.6,8,10 C.6,8,12 D.6,8,14 【考点】KS:勾股定理的逆定理. 【分析】根据勾股定理求出以较短的两条边为直角边的三角形的斜边的长度,然后与较长的边进行比较作出判断即可. 【解答】解:A、∵62+82=10>8,6+8>8,∴能组成锐角三角形; B、∵62+82=10是直角三角形,∴不能组成锐角三角形; C、62+82=10<12,6+8>12,∴不能组成锐角三角形; D、∵6+8=14,∴不能组成三角形. 故选:A. 【点评】本题考查了勾股定理的逆定理,利用勾股定理求出直角三角形的斜边是解题的关键. 第30页(共30页) 5.(3分)(2017•兴安盟)纳米技术是一种高新技术,纳米是非常小的长度单位,1纳米等于0.000000001米,将1纳米用科学记数法表示为( ) A.10﹣7米 B.10﹣8米 C.10﹣9米 D.10﹣10 米 【考点】1J:科学记数法—表示较小的数. 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:1纳米用科学记数法表示为10﹣9米, 故选:C. 【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 6.(3分)(2017•兴安盟)如图,在⊙O中,OA⊥BC,∠AOB=48°,D为⊙O上一点,则∠ADC的度数是( ) A.24° B.42° C.48° D.12° 【考点】M5:圆周角定理;M2:垂径定理. 【分析】由OA⊥BC,根据垂径定理的即可求得AC=AB,又由∠AOB=48°,然后根据圆周角定理,即可求得∠ADC的度数. 【解答】解:∵OA⊥BC, ∴AC=AB, ∴∠ADC=12∠AOB=12×48°=24°. 故选A. 【点评】 第30页(共30页) 此题考查了垂径定理与圆周角定理.此题难度不大,解题的关键是注意数形结合思想的应用. 7.(3分)(2017•兴安盟)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的鞋销售量如下表: 尺码/厘米 22 22.5 23 23.5 24 24.5 25 销售量/双 1 2 5 11 7 3 1 鞋店老板比较关注哪种尺码的鞋最畅销,也就是关注卖出鞋的尺码组成一组数据的( ) A.平均数 B.中位数 C.众数 D.方差 【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数. 【分析】根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据. 【解答】解:∵众数体现数据的最集中的一点,这样可以确定进货的数量, ∴鞋店老板最喜欢的是众数. 故选:C. 【点评】此题主要考查了统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 8.(3分)(2017•兴安盟)一元二次方程16x2﹣8x+1=0的根的情况是( ) A.有两个不相等的实数根 B.没有实数根 C.只有一个实数根 D.有两个相等的实数根 【考点】AA:根的判别式. 【分析】计算方程根的判别式即可求得答案. 第30页(共30页) 【解答】解: ∵16x2﹣8x+1=0, ∴△=(﹣8)2﹣4×16=64﹣64=0, ∴方程有两个相等的实数根, 故选D. 【点评】本题主要考查根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键. 9.(3分)(2017•兴安盟)下列命题正确的是( ) A.对角线互相垂直的四边形是菱形 B.对角线互相垂直的平行四边形是正方形 C.对角线相等的四边形是矩形 D.对角线相等的菱形是正方形 【考点】O1:命题与定理. 【分析】根据菱形、矩形、正方形的判定定理判断即可. 【解答】解:对角线互相垂直的平行四边形是菱形,A错误; 对角线互相垂直且相等的平行四边形是正方形,B错误; 对角线相等的平行四边形是矩形,C错误; 对角线相等的菱形是正方形,D正确, 故选:D. 【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 10.(3分)(2017•兴安盟)甲、乙两人匀速在400米环形跑道上跑步,同时同地出发,如果相向而行,每隔1分钟相遇一次;如果同向而行,每隔5分钟相遇一次,已知甲比乙的速度快.设甲每分钟跑x米,乙每分钟跑y米,根据题意,列出方程组正确的是( ) A.&60x+60y=400&300x-300y=400 第30页(共30页) B.&x+y=400&5x-5y=400 C.&60x+60y=400&300y-300x=400 D.&x+y=400&5y-5x=400 【考点】99:由实际问题抽象出二元一次方程组. 【分析】设设甲每分钟跑x米,乙每分钟跑y米,根据相向而行第一次相遇时两人的总路程为400,同向行走第一次相遇甲比乙多走400米,可得出方程组. 【解答】解:设甲每分钟跑x米,乙每分钟跑y米, 由题意,得:&x+y=400&5x-5y=400. 故选B. 【点评】本题考查了由实际问题抽象二元一次方程组的知识,是个行程问题,一次相遇,一次追及,根据路程可列方程组求解. 11.(3分)(2017•兴安盟)下列关于反比例函数y=-3x的说法正确的是( ) A.y随x的增大而增大 B.函数图象过点(2,32) C.图象位于第一、第三象限 D.x>0时,y随x的增大而增大 【考点】G4:反比例函数的性质. 【分析】直接利用反比例函数的性质分别分析得出答案. 【解答】解:A、反比例函数y=-3x,每个象限内,y随x的增大而增大,故此选项错误; B、函数图象过点(2,﹣32),故此选项错误; C、函数图象图象位于第二、第四象限,故此选项错误; D、x>0时,y随x的增大而增大,正确. 故选:D. 【点评】此题主要考查了反比例函数的性质,正确记忆相关性质是解题关键. 第30页(共30页) 12.(3分)(2017•兴安盟)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是AB、BC边上的动点,则AE+DE的最小值为( ) A.485 B.245 C.5 D.125 【考点】PA:轴对称﹣最短路线问题. 【分析】作点A关于BC的对称点A′,过点A′作A′D⊥AB交BC、AB分别于点E、D,根据轴对称确定最短路线问题,A′D的长度即为AE+DE的最小值,利用勾股定理列式求出AB,再利用∠ABC的正弦列式计算即可得解. 【解答】解:如图,作点A关于BC的对称点A′,过点A′作A′D⊥AB交BC、AB分别于点E、D, 则A′D的长度即为AE+DE的最小值,AA′=2AC=2×3=6, ∵∠ACB=90°,BC=4,AC=3, ∴AB=BC2+AC2=32+42=5, ∴sin∠BAC=BCAB=45, ∴A′D=AA′•sin∠BAC=6×45=245, 即AE+DE的最小值是245. 故选B 第30页(共30页) 【点评】本题考查了利用轴对称确定最短路线问题,主要利用了勾股定理,垂线段最短,锐角三角函数的定义,难点在于确定出点D、E的位置. 二、填空题(共5小题,每小题3分,满分15分) 13.(3分)(2017•兴安盟)分解因式:2a3﹣8a= 2a(a+2)(a﹣2) . 【考点】55:提公因式法与公式法的综合运用. 【分析】原式提取2a,再利用平方差公式分解即可. 【解答】解:原式=2a(a2﹣4)=2a(a+2)(a﹣2), 故答案为:2a(a+2)(a﹣2) 【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方程是解本题的关键. 14.(3分)(2017•兴安盟)如图,以正六边形ABCDEF的中心为坐标原点建立平面直角坐标系,顶点C、F在x轴上,顶点A的坐标为(1,3),则顶点D的坐标为 (﹣1,﹣3) . 【考点】MM:正多边形和圆;D5:坐标与图形性质. 【分析】根据图形,利用对称的性质计算即可求出D的坐标. 【解答】解:根据图形得:D(﹣1,﹣3), 故答案为:(﹣1,﹣3) 【点评】此题考查了正多边形和圆,以及坐标与图形性质,熟练掌握对称的性质是解本题的关键. 第30页(共30页) 15.(3分)(2017•兴安盟)计算:45°39′+65°41′= 111°20′, . 【考点】II:度分秒的换算. 【分析】两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度. 【解答】解:45°39′+65°41′=111°20′, 故答案为:111°20′, 【点评】本题考查了角的加减乘除运算.遇到加法时,先加再进位;遇到减法时,先借位再减;遇到乘法时,先乘再进位;遇到除法时,先借位再除. 16.(3分)(2017•兴安盟)一组数据5,2,x,6,4的平均数是4,这组数据的方差是 2 . 【考点】W7:方差;W1:算术平均数. 【分析】先由平均数的公式计算出x的值,再根据方差的公式计算即可. 【解答】解:∵数据5,2,x,6,4的平均数是4, ∴(5+2+x+6+4)÷5=4, 解得:x=3, ∴这组数据的方差是15[(5﹣3)2+(2﹣3)2+(3﹣3)2+(6﹣3)2+(4﹣3)2]=2; 故答案为:2. 【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(xn﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 17.(3分)(2017•兴安盟)如图,下列各图中的三个数之间具有相同规律.依此规律用含m,n的代数式表示y,则y= m(n+2) . 第30页(共30页) 【考点】37:规律型:数字的变化类. 【分析】根据数的特点,上边的数与比左边的数大2的数的积正好等于右边的数,然后写出M与m、n的关系即可 【解答】解:∵1×(2+2)=4, 3×(4+2)=18, 5×(6+2)=40, …, ∴y=m(n+2), 故答案为m(n+2). 【点评】本题是对数字变化规律的考查,观察出上边的数与比左边的数大2的数的积正好等于右边的数是解题的关键. 三、解答题(本题4个小题,每小题6分,共24分) 18.(6分)(2017•兴安盟)计算:55﹣|2﹣5|+(﹣2)﹣2﹣(π﹣3.14)0. 【考点】79:二次根式的混合运算;6E:零指数幂;6F:负整数指数幂. 【分析】分母有理化,化0指数幂为1,整理后得答案; 【解答】解:原式=5-5+2+14-1 =114. 【点评】本题考查了二次根式的混合计算,关键是根据根式与分数指数幂的互化及其化简运算. 19.(6分)(2017•兴安盟)先化简,再求值:a(a﹣2b)﹣(a+b)(a﹣b),其中a=12,b=﹣1. 【考点】4J:整式的混合运算—化简求值. 【分析】根据单项式乘多项式、平方差公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题. 【解答】解:a(a﹣2b)﹣(a+b)(a﹣b) 第30页(共30页) =a2﹣2ab﹣a2+b2 =﹣2ab+b2, 当a=12,b=﹣1时,原式=﹣2×12×(﹣1)+(﹣1)2=1+1=2. 【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法. 20.(6分)(2017•兴安盟)如图,在平面直角坐标系中,抛物线的顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0). (1)写出C点的坐标,并求出抛物线的解析式; (2)观察图象直接写出函数值为正数时,自变量的取值范围. 【考点】HA:抛物线与x轴的交点;H3:二次函数的性质;H8:待定系数法求二次函数解析式. 【分析】(1)依据顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0),可得点C的坐标为(﹣1,0),设抛物线的解析式为y=a(x﹣3)(x+1),把A(1,﹣4)代入,可得二次函数解析式; (2)当函数值为正数时,观察x轴上方部分的抛物线,即可得到自变量的取值范围是x<﹣1或x>3. 【解答】解:(1)∵ 第30页(共30页) 顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0), ∴点C的坐标为(﹣1,0), 设抛物线的解析式为y=a(x﹣3)(x+1), 把A(1,﹣4)代入,可得 ﹣4=a(1﹣3)(1+1), 解得a=1, ∴抛物线的解析式为y=(x﹣3)(x+1), 即y=x2﹣2x﹣3; (2)由图可得,当函数值为正数时,自变量的取值范围是x<﹣1或x>3. 【点评】本题考查了二次函数的解析式的求法、二次函数的性质、二次函数与二次方程的联系等代数问题;对综合的分析问题解决问题的能力提出了较高的要求. 21.(6分)(2017•兴安盟)甲袋中装有4个相同的小球,分别标有3,4,5,6;乙袋中装有3个相同的小球,分别标有7,8,9.芳芳和明明用摸球记数的方法在如图所示的正六边形ABCDEF的边上做游戏,游戏规则为:游戏者从口袋中随机摸出一个小球,小球上的数字是几,就从顶点A按顺时针方向连续跳动几个边长,跳回起点者获胜;芳芳只从甲袋中摸出一个小球,明明先后从甲、乙口袋中各摸出一个小球.如:先后摸出标有4和7的小球,就先从点A按顺时针连跳4个边长,跳到点E,再从点E顺时针连跳7个边长,跳到点F. 分别求出芳芳、明明跳回起点A的概率,并指出游戏规则是否公平. 第30页(共30页) 【考点】X7:游戏公平性;X6:列表法与树状图法. 【分析】运用树状图法,分别求得芳芳、明明跳回起点A的概率,进而得出游戏规则是否公平. 【解答】解:芳芳: 画树状图可得: 有4种等可能的结果,其中1种能跳回起点A, 故芳芳跳回起点A的概率为14; 明明: 画树状图可得: 有12种等可能的结果,其中3种能跳回起点A, 故明明跳回起点A的概率为14; ∴芳芳、明明跳回起点A的概率相等,故游戏规则公平. 【点评】本题主要考查了游戏的公平性,判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平. 第30页(共30页) 四、(本题7分) 22.(7分)(2017•兴安盟)如图,在平行四边形ABCD中,AD>AB. (1)作∠BAD的平分线交BC于点E,在AD边上截取AF=AB,连接EF(要求:尺规作图,保留作图痕迹,不写作法); (2)判断四边形ABEF的形状,并说明理由. 【考点】N2:作图—基本作图;L5:平行四边形的性质. 【分析】(1)由角平分线的作法容易得出结果,在AD上截取AF=AB,连接EF;画出图形即可; (2)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由(1)得:AF=AB,得出BE=AF,即可得出结论. 【解答】解:(1)如图所示: (2)四边形ABEF是菱形;理由如下: ∵四边形ABCD是平行四边形, ∴AD∥BC, ∴∠DAE=∠AEB, ∵AE平分∠BAD, ∴∠BAE=∠DAE, ∴∠BAE=∠AEB, ∴BE=AB, 由(1)得:AF=AB, 第30页(共30页) ∴BE=AF, 又∵BE∥AF, ∴四边形ABEF是平行四边形, ∵AF=AB, ∴四边形ABEF是菱形. 【点评】本题考查了平行四边形的性质、作图﹣基本作图、等腰三角形的判定、菱形的判定;熟练掌握平行四边形的性质和角平分线作图,证明BE=AB是解决问题(2)的关键. 五、(本题7分) 23.(7分)(2017•兴安盟)为了了解某中学学生的身高情况,随机对该校男、女生的身高进行抽样调查.抽取的样本中,男、女生的人数相同,根据所得数据绘制成如图所示的统计图表. 组别 男女生身高(cm) A 150≤ 第30页(共30页) x<155 B 155≤x<160 C 160≤x<165 D 165≤x<170 E 170≤x<175 第30页(共30页) 根据图表中提供的信息,回答下列问题: (1)在样本中,男生身高的中位数落在 D 组(填组别序号),女生身高在B组的 有 12 人; (2)在样本中,身高在170≤x<175之间的共有 10 人,人数最多的是 C 组(填组别序号) (3)已知该校共有男生500人,女生480人,请估计身高在160≤x<170之间的学生有多少人? 【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图;W4:中位数. 【分析】(1)先求出男生总人数,再根据中位数的定义解答即可,总女生总人数乘以B组的百分比可得; (2)将位于这一小组内的频数相加,分别计算出各组人数之和即可求得结果; (3)分别用男、女生的人数乘以对应的百分比,相加即可得解. 【解答】解:(1)∵在样本中,男生共有2+4+8+12+14=40人, ∴中位数是第20和第21人的平均数, ∴男生身高的中位数落在D组, 女生身高在B组的人数有40×(1﹣30%﹣20%﹣15%﹣5%)=12人, 故答案为:D、12; (2)在样本中,身高在170≤x<175之间的人数共有8+40×5%=10人, ∵A组人数为2+40×20%=10人,B组人数为4+12=32人,C组人数为12+40×35%=26人,D组人数为14+40×10%=18人,E组人数为8+40×5%=10人, ∴C组人数最多, 故答案为:10、C; (3)500×12+1440+480×(35%+10%)=541(人), 故估计身高在160≤x<170之间的学生约有541人. 【点评】 第30页(共30页) 本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题. 六、(本题8分) 24.(8分)(2017•兴安盟)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC. (1)求证:AC是⊙O的切线; (2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π) 【考点】ME:切线的判定与性质;MO:扇形面积的计算. 【分析】(1)连接OD,根据CD与圆O相切,利用切线的性质得到OD垂直于CD,再由OC与BD平行,得到同位角相等与内错角相等,根据OB=OD,利用等边对等角得到一对角相等,等量代换得到夹角相等,再由OA=OD,OC=OC,利用SAS得到三角形AOC与三角形DOC全等,利用全等三角形对应角相等得到∠OAC=∠ODC=90°,即可得证; (2)由OD=OB=DB得到三角形ODB为等边三角形,求出∠DOB=60°,根据图中阴影部分的面积=扇形DOB的面积﹣△DOB的面积解答即可. 【解答】(1)证明:连接OD, ∵CD与圆O相切, ∴OD⊥CD, ∴∠CDO=90°, ∵BD∥OC, 第30页(共30页) ∴∠AOC=∠OBD,∠COD=∠ODB, ∵OB=OD, ∴∠OBD=∠ODB, ∴∠AOC=∠COD, 在△AOC和△DOC中,&OA=OD&∠AOC=∠COD&OC=OC, ∴△AOC≌△EOC(SAS), ∴∠CAO=∠CDO=90°,则AC与圆O相切; (2)∵AB=OC=4,OB=OD, ∴Rt△ODC与Rt△OAC是含30°的直角三角形, ∴∠DOC=∠COA=60°, ∴∠DOB=60°, ∴△BOD为等边三角形, 图中阴影部分的面积=扇形DOB的面积﹣△DOB的面积=60⋅π×22360-12×2×3=2π3-3. 【点评】此题考查了切线的判定与性质,等边三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握切线的判定与性质是解本题的关键. 七、(本题10分) 25.(10分)(2017•兴安盟)某车行经销的A型自行车去年6月份销售总额为1.6万元,今年由于改造升级每辆车售价比去年增加200元,今年6月份与去年同期相比,销售数量相同,销售总额增加25%. (1)求今年A型车每辆售价多少元? (2)该车行计划7月份用不超过4.3万元的资金新进一批A型车和B型车共50辆,应如何进货才能使这批车售完后获利最多? 今年A,B两种型号车的进价和售价如下表: 第30页(共30页) A型车 B型车 进价(元/辆) 800 950 售价(元/辆) 今年售价 1200 【考点】B7:分式方程的应用;C9:一元一次不等式的应用. 【分析】(1)设今年A型车每辆售价为x元,则去年A型车每辆售价为(x﹣200)元,根据数量=总价÷单价结合今年6月份与去年同期相比销售数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论; (2)设购进A型车m辆,则购进B型车(50﹣m)辆,根据总价=单价×数量结合总费用不超过4.3万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据销售利润=单辆利润×购进数量即可得出销售利润关于m的函数关系式,利用一次函数的性质解决最值问题即可. 【解答】解:(1)设今年A型车每辆售价为x元,则去年A型车每辆售价为(x﹣200)元, 根据题意得:1.6x-200=1.6×(1+25%)x, 解得:x=1000, 经检验,x=1000是原分式方程的解. 答:今年A型车每辆售价为1000元. (2)设购进A型车m辆,则购进B型车(50﹣m)辆, 根据题意得:800m+950(50﹣m)≤43000, 第30页(共30页) 解得:m≥30. 销售利润为(100﹣800)m+(1200﹣950)(50﹣m)=﹣50m+12500, ∵﹣50<0, ∴当m=30时,销售利润最多. 答:当购进A型车30辆、购进B型车20辆时,才能使这批车售完后获利最多. 【点评】本题考查了分式方程的应用、一次函数的最值以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,找出销售利润关于m的函数关系式. 八、(本题13分) 26.(13分)(2017•兴安盟)如图1,在△ABC中,∠ACB=90°,∠B=30°,AC=4,D是AB的中点,EF是△ACD的中位线,矩形EFGH的顶点都在△ACD的边上. (1)求线段EF、FG的长; (2)如图2,将矩形EFGH沿AB向右平移,点F落在BC上时停止移动,设矩形移动的距离为x,矩形与△CBD重叠部分的面积为S,求出S关于x的函数解析式; (3)如图3,矩形EFGH平移停止后,再绕点G按顺时针方向旋转,当点H落在CD边上时停止旋转,此时矩形记作E1F1GH1,设旋转角为α,求cosα的值. 【考点】LO:四边形综合题. 【分析】(1)根据已知,由直角三角形的性质可知AB=8,从而求得AD,CD,利用中位线的性质可得EF,DF,利用三角函数可得GF,由矩形的面积公式可得结果; (2)首先利用分类讨论的思想,分析当矩形与△CBD重叠部分为三角形时(0<x≤1),利用三角函数和三角形的面积公式可得结果;当矩形与△CBD重叠部分为直角梯形时(1<x≤2),列出方程解得x; (3)作H1Q⊥AB于Q,设DQ=m,则H1Q=3m,又DG=1,H1 第30页(共30页) G=2,利用勾股定理可得m,在Rt△QH1G中,利用三角函数解得cosα. 【解答】解:(1)在△ABC中, ∵∠ACB=90°,∠B=30°,AC=4, ∴AB=8, 又∵D是AB的中点, ∴AD=4,CD=12AB=4, 又∵EF是△ACD的中位线, ∴EF=DF=2, 在△ACD中,AD=CD,∠A=60°, ∴∠ADC=60°, 在△FGD中,GF=DF•sin60°=3, ∴矩形EFGH的面积S=EF•GF=12×23=3; (2)设矩形移动的距离为x,则0<x≤2, 当矩形与△CBD重叠部分为三角形时,如图, 则0<x≤1, ∴FN=x,∠FNM=∠ADC=60°. ∴FM=3x S=12x•3x=32x2, 当矩形与△CBD重叠部分为直角梯形时,如图2, 则 1<x≤2, ∵FN=x,DG=x﹣1 ∴重叠部分的面积S=12(DG+FN)FG=12(x﹣1+x)×3=32(2x﹣1); 第30页(共30页) (3)如图3,作H1Q⊥AB于Q, 设DQ=m,则H1Q=3m, ∵DG=1,H1G=2, ∴GQ=m+1, 在Rt△H1QG中,根据勾股定理得,H1Q2+GQ2=H1G2, ∴3m2+(m+1)2=4, 解之得m=13-14(负的舍去), ∴QG=1+13-14=13+34 ∴cosα=QGH1G=13+342=13+38. 【点评】此题是四边形综合题,主要考查了直角三角形的性质,矩形的性质,中位线的性质和三角函数定义等,利用分类讨论的思想,构建直角三角形是解答此题的关键. 第30页(共30页)查看更多