- 2021-05-13 发布 |
- 37.5 KB |
- 15页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018中考点线面角相交线与平行线真题
点、线、面、角、相交线与平行线 参考答案与试题解析 一.选择题(共36小题) 1.(2018•南京)用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论: ①可能是锐角三角形; ②可能是直角三角形; ③可能是钝角三角形; ④可能是平行四边形. 其中所有正确结论的序号是( ) A.①② B.①④ C.①②④ D.①②③④ 【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形. 【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形. 故选:B. 2.(2018•内江)如图是正方体的表面展开图,则与“前”字相对的字是( ) A.认 B.真 C.复 D.习 【分析】由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形. 【解答】解:由图形可知,与“前”字相对的字是“真”. 故选:B. 3.(2018•长沙)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是( ) A. B. C. D. 【分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果. 【解答】解:绕直线l旋转一周,可以得到圆台, 故选:D. 4.(2018•河北)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为( ) A.北偏东30° B.北偏东80° C.北偏西30° D.北偏西50° 【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案. 【解答】解:如图, AP∥BC, ∴∠2=∠1=50°. ∠3=∠4﹣∠2=80°﹣50°=30°, 此时的航行方向为北偏东30°, 故选:A. 5.(2018•滨州)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为( ) A.2+(﹣2) B.2﹣(﹣2) C.(﹣2)+2 D.(﹣2)﹣2 【分析】根据数轴上两点间距离的定义进行解答即可. 【解答】解:A、B两点之间的距离可表示为:2﹣(﹣2). 故选:B. 6.(2018•无锡)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是( ) A. B. C. D. 【分析】利用正方体及其表面展开图的特点解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢. 【解答】解:能折叠成正方体的是 故选:C. 7.(2018•凉州区)若一个角为65°,则它的补角的度数为( ) A.25° B.35° C.115° D.125° 【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解. 【解答】解:180°﹣65°=115°. 故它的补角的度数为115°. 故选:C. 8.(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是( ) A.图① B.图② C.图③ D.图④ 【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解. 【解答】解:图①,∠α+∠β=180°﹣90°,互余; 图②,根据同角的余角相等,∠α=∠β; 图③,根据等角的补角相等∠α=∠β; 图④,∠α+∠β=180°,互补. 故选:A. 9.(2018•凉山州)一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( ) A.和 B.谐 C.凉 D.山 【分析】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答. 【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”. 故选:D. 10.(2018•邵阳)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为( ) A.20° B.60° C.70° D.160° 【分析】根据对顶角相等解答即可. 【解答】解:∵∠AOD=160°, ∴∠BOC=∠AOD=160°, 故选:D. 11.(2018•滨州)如图,直线AB∥CD,则下列结论正确的是( ) A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180° 【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°. 【解答】解:如图,∵AB∥CD, ∴∠3+∠5=180°, 又∵∠5=∠4, ∴∠3+∠4=180°, 故选:D. 12.(2018•咸宁)如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于( ) A.120° B.110° C.100° D.70° 【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数. 【解答】解:如图,∵∠1=70°, ∴∠3=180°﹣∠1=180°﹣70°=110°, ∵a∥b, ∴∠2=∠3=110°. 故选:B. 13.(2018•泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为( ) A.14° B.16° C.90°﹣α D.α﹣44° 【分析】依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出∠1=44°﹣30°=14°. 【解答】解:如图,∵矩形的对边平行, ∴∠2=∠3=44°, 根据三角形外角性质,可得∠3=∠1+30°, ∴∠1=44°﹣30°=14°, 故选:A. 14.(2018•金华)如图,∠B的同位角可以是( ) A.∠1 B.∠2 C.∠3 D.∠4 【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案. 【解答】解:∠B的同位角可以是:∠4. 故选:D. 15.(2018•聊城)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是( ) A.110° B.115° C.120° D.125° 【分析】直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案. 【解答】解:延长FE交DC于点N, ∵直线AB∥EF, ∴∠BCD=∠DNF=95°, ∵∠CDE=25°, ∴∠DEF=95°+25°=120°. 故选:C. 16.(2018•绵阳)如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( ) A.14° B.15° C.16° D.17° 【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°. 【解答】解:如图,∵∠ABC=60°,∠2=44°, ∴∠EBC=16°, ∵BE∥CD, ∴∠1=∠EBC=16°, 故选:C. 17.(2018•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是( ) A.50° B.70° C.80° D.110° 【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案. 【解答】解:∵∠BAC的平分线交直线b于点D, ∴∠BAD=∠CAD, ∵直线a∥b,∠1=50°, ∴∠BAD=∠CAD=50°, ∴∠2=180°﹣50°﹣50°=80°. 故选:C. 18.(2018•孝感)如图,直线AD∥BC,若∠1=42°,∠BAC=78°,则∠2的度数为( ) A.42° B.50° C.60° D.68° 【分析】依据三角形内角和定理,即可得到∠ABC=60°,再根据AD∥BC,即可得出∠2=∠ABC=60°. 【解答】解:∵∠1=42°,∠BAC=78°, ∴∠ABC=60°, 又∵AD∥BC, ∴∠2=∠ABC=60°, 故选:C. 19.(2018•衢州)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于( ) A.112° B.110° C.108° D.106° 【分析】由折叠可得,∠DGH=∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°. 【解答】解:∵∠AGE=32°, ∴∠DGE=148°, 由折叠可得,∠DGH=∠DGE=74°, ∵AD∥BC, ∴∠GHC=180°﹣∠DGH=106°, 故选:D. 20.(2018•新疆)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为( ) A.85° B.75° C.60° D.30° 【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D. 【解答】解:∵AB∥CD, ∴∠C=∠ABC=30°, 又∵CD=CE, ∴∠D=∠CED, ∵∠C+∠D+∠CED=180°,即30°+2∠D=180°, ∴∠D=75°. 故选:B. 21.(2018•黔南州)如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=( ) A.30° B.60° C.90° D.120° 【分析】根据平行线的性质:两条直线平行,内错角相等及角平分线的性质,三角形内角和定理解答. 【解答】解:∵AD∥BC, ∴∠ADB=∠B=30°, 再根据角平分线的概念,得:∠BDE=∠ADB=30°, 再根据两条直线平行,内错角相等得:∠DEC=∠ADE=60°, 故选:B. 22.(2018•郴州)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b( ) A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠3 【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进行判断即可. 【解答】解:由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b; 由∠1=∠3,不能得到a∥b; 故选:D. 23.(2018•杭州)若线段AM,AN分别是△ABC的BC边上的高线和中线,则( ) A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN 【分析】根据垂线段最短解答即可. 【解答】解:因为线段AM,AN分别是△ABC的BC边上的高线和中线, 所以AM≤AN, 故选:D. 24.(2018•衢州)如图,直线a,b被直线c所截,那么∠1的同位角是( ) A.∠2 B.∠3 C.∠4 D.∠5 【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可. 【解答】解:由同位角的定义可知, ∠1的同位角是∠4, 故选:C. 25.(2018•广东)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是( ) A.30° B.40° C.50° D.60° 【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°. 【解答】解:∵∠DEC=100°,∠C=40°, ∴∠D=40°, 又∵AB∥CD, ∴∠B=∠D=40°, 故选:B. 26.(2018•自贡)在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若∠1=55°,则∠2的度数是( ) A.50° B.45° C.40° D.35° 【分析】直接利用平行线的性质结合已知直角得出∠2的度数. 【解答】解:由题意可得:∠1=∠3=55°, ∠2=∠4=90°﹣55°=35°. 故选:D. 27.(2018•十堰)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是( ) A.62° B.108° C.118° D.152° 【分析】依据AB∥CD,即可得出∠2=∠ABC=∠1+∠CBE. 【解答】解:如图,∵AB∥CD, ∴∠2=∠ABC=∠1+∠CBE=28°+90°=118°, 故选:C. 28.(2018•临沂)如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是( ) A.42° B.64° C.74° D.106° 【分析】利用平行线的性质、三角形的内角和定理计算即可; 【解答】解:∵AB∥CD, ∴∠ABC=∠C=64°, 在△BCD中,∠CBD=180°﹣∠C﹣∠D=180°﹣64°﹣42°=74°, 故选:C. 29.(2018•枣庄)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( ) A.20° B.30° C.45° D.50° 【分析】根据平行线的性质即可得到结论. 【解答】解:∵直线m∥n, ∴∠2=∠ABC+∠1=30°+20°=50°, 故选:D. 30.(2018•内江)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( ) A.31° B.28° C.62° D.56° 【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数. 【解答】解:∵四边形ABCD为矩形, ∴AD∥BC,∠ADC=90°, ∵∠FDB=90°﹣∠BDC=90°﹣62°=28°, ∵AD∥BC, ∴∠CBD=∠FDB=28°, ∵矩形ABCD沿对角线BD折叠, ∴∠FBD=∠CBD=28°, ∴∠DFE=∠FBD+∠FDB=28°+28°=56°. 故选:D. 31.(2018•广州)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( ) A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4 【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可. 根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角进行分析即可. 【解答】解:∠1的同位角是∠2,∠5的内错角是∠6, 故选:B. 32.(2018•随州)如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是( ) A.25° B.35° C.45° D.65° 【分析】过点C作CD∥a,再由平行线的性质即可得出结论. 【解答】解:如图,过点C作CD∥a,则∠1=∠ACD. ∵a∥b, ∴CD∥b, ∴∠2=∠DCB. ∵∠ACD+∠DCB=90°, ∴∠1+∠2=90°, 又∵∠1=65°, ∴∠2=25°. 故选:A. 33.(2018•安顺)如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为( ) A.58° B.42° C.32° D.28° 【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可. 【解答】解:∵直线a∥b, ∴∠ACB=∠2, ∵AC⊥BA, ∴∠BAC=90°, ∴∠2=∠ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°, 故选:C. 34.(2018•株洲)如图,直线l1,l2被直线l3所截,且l1∥l2,过l1上的点A作AB⊥l3交l3于点B,其中∠1<30°,则下列一定正确的是( ) A.∠2>120° B.∠3<60° C.∠4﹣∠3>90° D.2∠3>∠4 【分析】根据三角形内角和定理求出∠ACB,再根据平行线的性质逐个判断即可. 【解答】解: ∵AB⊥l3, ∴∠ABC=90°, ∵∠1<30° ∴∠ACB=90°﹣∠1>60°, ∴∠2<120°, ∵直线l1∥l2, ∴∠3=∠ABC>60°, ∴∠4﹣∠3=180°﹣∠3﹣∠3=180°﹣2∠3<60°, 2∠3>∠4, 故选:D. 35.(2018•达州)如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为( ) A.30° B.35° C.40° D.45° 【分析】根据平行线的性质和三角形的外角性质解答即可. 【解答】解: ∵AB∥CD,∠1=45°, ∴∠4=∠1=45°, ∵∠3=80°, ∴∠2=∠3﹣∠4=80°﹣45°=35°, 故选:B. 36.(2018•潍坊)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是( ) A.45° B.60° C.75° D.82.5° 【分析】直接利用平行线的性质结合已知角得出答案. 【解答】解:作直线l平行于直角三角板的斜边, 可得:∠2=∠3=45°,∠3=∠4=30°, 故∠1的度数是:45°+30°=75°. 故选:C. 查看更多