- 2021-05-13 发布 |
- 37.5 KB |
- 19页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学专题训练一旋转变换 浙教版
旋转变换 一、选择题(共13小题) 1.(天津)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( ) A.130° B.150° C.160° D.170° 2.(哈尔滨)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是( ) A.32° B.64° C.77° D.87° 3.(德州)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( ) A.35° B.40° C.50° D.65° 4.(巴彦淖尔)如图,E、F分别是正方形ABCD的边AB、BC上的点,且BE=CF,连接CE、DF,将△DCF绕着正方形的中心O按顺时针方向旋转到△CBE的位置,则旋转角为( ) A.30° B.45° C.60° D.90° 5.(济宁)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则的值为( ) A. B. C. D. 6.(邵阳)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是( ) A.2015π B.3019.5π C.3018π D.3024π 7.(枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是( ) A. B. C. D.﹣1 8.(2013•桂林)下列图形中既是中心对称图形又是轴对称图形的是( ) A. B. C. D. 9.(广州)将图中所示的图案以圆心为中心,旋转180°后得到的图案是( ) A. B. C. D. 10.(抚顺)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为( ) A.3 B.1.5 C.2 D. 11.(贺州)如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是( ) A.34° B.36° C.38° D.40° 12.(曲靖)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是( ) A.15° B.20° C.25° D.30° 13.(青海)一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角形的斜边上,AC与DM,DN分别交于点E,F,把△DEF绕点D旋转到一定位置,使得DE=DF,则∠BDN的度数是( ) A.105° B.115° C.120° D.135° 二、填空题(共14小题) 14.(玉林)如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC= . 15.(吉林)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为 cm. 16.(大庆)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为 . 17.(福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是 . 18.(青岛)如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为(1,1),(﹣1,1),把正方形ABCD绕原点O逆时针旋转45°得正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分所形成的正八边形的边长为 . 19.(湘潭)如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE= . 20.(绵阳)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为 . 21.(沈阳)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK= . 22.(扬州)如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= . 23.(重庆)如图,在矩形ABCD中,AB=4,AD=10.连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当射线BE′和射线BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为 . 24.(梧州)如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A′恰好落在AC上,连接CC′,则∠ACC′= . 25.(钦州)如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB绕点O逆时针旋转90°得到△COD,则旋转过程中形成的阴影部分的面积为 . 26.(宁德)如图,将△ABC绕点A按顺时针方向旋转60°得△ADE,则∠BAD= 度. 27.(镇江)如图,将等边△OAB绕O点按逆时针方向旋转150°,得到△OA′B′(点A′,B′分别是点A,B的对应点),则∠1= °. 三、解答题(共3小题) 28.(日照)如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN. (1)求证:AM=BN; (2)当MA∥CN时,试求旋转角α的余弦值. 29.(湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D. (1)求证:BE=CF; (2)当四边形ACDE为菱形时,求BD的长. 30.(雅安)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE. (1)求证:△BDE≌△BCE; (2)试判断四边形ABED的形状,并说明理由. 浙江省衢州市2016年中考数学(浙教版)专题训练(一):旋转变换 参考答案与试题解析 一、选择题(共13小题) 1.(天津)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( ) A.130° B.150° C.160° D.170° 【解答】解:∵四边形ABCD是平行四边形,∠ADC=60°, ∴∠ABC=60°,∠DCB=120°, ∵∠ADA′=50°, ∴∠A′DC=10°, ∴∠DA′B=130°, ∵AE⊥BC于点E, ∴∠BAE=30°, ∵△BAE顺时针旋转,得到△BA′E′, ∴∠BA′E′=∠BAE=30°, ∴∠DA′E′=∠DA′B+∠BA′E′=160°. 故选:C. 2.(哈尔滨)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是( ) A.32° B.64° C.77° D.87° 【解答】解:由旋转的性质可知,AC=AC′, ∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°. ∵∠CC′B′=32°, ∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°, ∵∠B=∠C′B′A, ∴∠B=77°, 故选C. 3.(德州)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( ) A.35° B.40° C.50° D.65° 【解答】解:∵CC′∥AB, ∴∠ACC′=∠CAB=65°, ∵△ABC绕点A旋转得到△AB′C′, ∴AC=AC′, ∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°, ∴∠CAC′=∠BAB′=50°. 故选C. 4.(巴彦淖尔)如图,E、F分别是正方形ABCD的边AB、BC上的点,且BE=CF,连接CE、DF,将△DCF绕着正方形的中心O按顺时针方向旋转到△CBE的位置,则旋转角为( ) A.30° B.45° C.60° D.90° 【解答】解:∵正方形ABCD,O为正方形的中心, ∴OD=OC,OD⊥OC, ∴∠DOC=90°, 由题意得到D对应点为C,连接OC,OD,∠DOC即为旋转角, 则将△DCF绕着正方形的中心O按顺时针方向旋转到△CBE的位置,旋转角为90°, 故选D. 5.(济宁)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则的值为( ) A. B. C. D. 【解答】解:∵点D为斜边AB的中点, ∴CD=AD=DB, ∴∠ACD=∠A=30°,∠BCD=∠B=60°, ∵∠EDF=90°, ∴∠CPD=60°, ∴∠MPD=∠NCD, ∵△EDF绕点D顺时针方向旋转α(0°<α<60°), ∴∠PDM=∠CDN=α, ∴△PDM∽△CDN, ∴=, 在Rt△PCD中,∵tan∠PCD=tan30°=, ∴=tan30°=. 故选C. 6.(邵阳)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是( ) A.2015π B.3019.5π C.3018π D.3024π 【解答】解:转动一次A的路线长是:, 转动第二次的路线长是:, 转动第三次的路线长是:, 转动第四次的路线长是:0, 转动五次A的路线长是:, 以此类推,每四次循环, 故顶点A转动四次经过的路线长为: +2π=6π, 2015÷4=503余3 顶点A转动四次经过的路线长为:6π×504=3024π. 故选:D. 7.(枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是( ) A. B. C. D.﹣1 【解答】解:连接AC1, ∵四边形AB1C1D1是正方形, ∴∠C1AB1=×90°=45°=∠AC1B1, ∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1, ∴∠B1AB=45°, ∴∠DAB1=90°﹣45°=45°, ∴AC1过D点,即A、D、C1三点共线, ∵正方形ABCD的边长是1, ∴四边形AB1C1D1的边长是1, 在Rt△C1D1A中,由勾股定理得:AC1==, 则DC1=﹣1, ∵∠AC1B1=45°,∠C1DO=90°, ∴∠C1OD=45°=∠DC1O, ∴DC1=OD=﹣1, ∴S△ADO=×OD•AD=, ∴四边形AB1OD的面积是=2×=﹣1, 故选:D. 8.(2013•桂林)下列图形中既是中心对称图形又是轴对称图形的是( ) A. B. C. D. 【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意; B、是轴对称图形,也是中心对称图形,符合题意; C、是轴对称图形,不是中心对称图形,不符合题意; D、不是轴对称图形,是中心对称图形,不符合题意. 故选:B. 9.(广州)将图中所示的图案以圆心为中心,旋转180°后得到的图案是( ) A. B. C. D. 【解答】解:将图中所示的图案以圆心为中心,旋转180°后得到的图案是. 故选:D. 10.(抚顺)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为( ) A.3 B.1.5 C.2 D. 【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC, ∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°, ∴∠DAD′=60°, ∴∠DAE=30°, ∴∠EAC=∠ACD=30°, ∴AE=CE, 在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=×3=, 根据勾股定理得:x2=(3﹣x)2+()2, 解得:x=2, ∴EC=2, 则S△AEC=EC•AD=, 故选:D. 11.(贺州)如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是( ) A.34° B.36° C.38° D.40° 【解答】解:由题意得,∠AOD=31°,∠BOC=31°,又∠AOC=100°, ∴∠DOB=100°﹣31°﹣31°=38°. 故选:C. 12.(曲靖)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是( ) A.15° B.20° C.25° D.30° 【解答】解:∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF, ∴∠AOF=90°+40°=130°,OA=OF, ∴∠OFA=(180°﹣130°)÷2=25°. 故选:C. 13.(青海)一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角形的斜边上,AC与DM,DN分别交于点E,F,把△DEF绕点D旋转到一定位置,使得DE=DF,则∠BDN的度数是( ) A.105° B.115° C.120° D.135° 【解答】解:∵DE=DF,∠EDF=30°, ∴∠DFC=(180°﹣∠EDF)=75°, ∵∠C=45°, ∴∠BDN=∠DFC+∠C=75°+45°=120°, 故选C. 二、填空题(共14小题) 14.(玉林)如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC= 105° . 【解答】解:连接OQ, ∵AC=BC,∠ACB=90°, ∴∠BAC=∠B=45°, 由旋转的性质可知:△AQC≌△BOC, ∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO, ∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°, ∴∠OQC=45°, ∵BO:OA=1:, 设BO=1,OA=, ∴AQ=1,则tan∠AQO==, ∴∠AQO=60°, ∴∠AQC=105°. 15.(吉林)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为 42 cm. 【解答】解:∵将△ABC绕点B顺时针旋转60°,得到△BDE, ∴△ABC≌△BDE,∠CBD=60°, ∴BD=BC=12cm, ∴△BCD为等边三角形, ∴CD=BC=CD=12cm, 在Rt△ACB中,AB==13, △ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm), 故答案为:42. 16.(大庆)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为 π+ . 【解答】解:∵∠C=90°,AC=BC=1, ∴AB==; 根据题意得:△ABC绕点B顺时针旋转135°,BC落在x轴上;△ABC再绕点C顺时针旋转90°,AC落在x轴上,停止滚动; ∴点A的运动轨迹是:先绕点B旋转135°,再绕点C旋转90°;如图所示: ∴点A经过的路线与x轴围成的图形是: 一个圆心角为135°,半径为的扇形,加上△ABC,再加上圆心角是90°,半径是1的扇形; ∴点A经过的路线与x轴围成图形的面积 =+×1×1+=π+; 故答案为:π+. 17.(福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是 +1 . 【解答】解:如图,连接AM, 由题意得:CA=CM,∠ACM=60°, ∴△ACM为等边三角形, ∴AM=CM,∠MAC=∠MCA=∠AMC=60°; ∵∠ABC=90°,AB=BC=, ∴AC=2=CM=2, ∵AB=BC,CM=AM, ∴BM垂直平分AC, ∴BO=AC=1,OM=CM•sin60°=, ∴BM=BO+OM=1+, 故答案为:1+. 18.(青岛)如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为(1,1),(﹣1,1),把正方形ABCD绕原点O逆时针旋转45°得正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分所形成的正八边形的边长为 2﹣2 . 【解答】解:如图,由题意得: 正方形ABCD的边长为2, ∴该正方形的对角线长为2, ∴OA′=;而OM=1, ∴A′M=﹣1; 由题意得:∠MA′N=45°,∠A′MN=90°, ∴∠MNA′=45°, ∴MN=A′M=; 由勾股定理得:A′N=2﹣; 同理可求D′M′=2﹣, ∴NM'=2﹣(4﹣2)=2﹣2, ∴正八边形的边长为2﹣2. 19.(湘潭)如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE= 3 . 【解答】解:∵将△ABC绕点A顺时针旋转60°得到△AED, ∴∠BAE=60°,AB=AE, ∴△BAE是等边三角形, ∴BE=3. 故答案为:3. 20.(绵阳)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为 3 . 【解答】解:∵△ABC为等边三角形, ∴AB=AC,∠BAC=60°, ∵△ABD绕A点逆时针旋转得△ACE, ∴AD=AE=5,∠DAE=∠BAC=60°,CE=BD=6, ∴△ADE为等边三角形, ∴DE=AD=5, 过E点作EH⊥CD于H,如图,设DH=x,则CH=4﹣x, 在Rt△DHE中,EH2=52﹣x2, 在Rt△CHE中,EH2=62﹣(4﹣x)2, ∴52﹣x2=62﹣(4﹣x)2,解得x=, ∴EH==, 在Rt△EDH中,tan∠HDE===3, 即∠CDE的正切值为3. 故答案为:3. 21.(沈阳)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK= 2﹣3 . 【解答】解:连接BH,如图所示: ∵四边形ABCD和四边形BEFG是正方形, ∴∠BAH=∠ABC=∠BEH=∠F=90°, 由旋转的性质得:AB=EB,∠CBE=30°, ∴∠ABE=60°, 在Rt△ABH和Rt△EBH中, , ∴Rt△ABH≌△Rt△EBH(HL), ∴∠ABH=∠EBH=∠ABE=30°,AH=EH, ∴AH=AB•tan∠ABH=×=1, ∴EH=1, ∴FH=﹣1, 在Rt△FKH中,∠FKH=30°, ∴KH=2FH=2(﹣1), ∴AK=KH﹣AH=2(﹣1)﹣1=2﹣3; 故答案为:2﹣3. 22.(扬州)如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= 5 . 【解答】解:作FG⊥AC, 根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°, ∵点F是DE的中点, ∴FG∥CD ∴GF=CD=AC=3 EG=EC=BC=2 ∵AC=6,EC=BC=4 ∴AE=2 ∴AG=4 根据勾股定理,AF=5. 23.(重庆)如图,在矩形ABCD中,AB=4,AD=10.连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当射线BE′和射线BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为 . 【解答】解:在Rt△ABD中,由勾股定理,得 BD===14, 在Rt△ABF中,由勾股定理,得: BF2=(4)2+(10﹣BF)2, 解得BF=, AF=10﹣=. 过G作GH∥BF,交BD于H, ∴∠FBD=∠GHD,∠BGH=∠FBG, ∵FB=FD, ∴∠FBD=∠FDB, ∴∠FDB=∠GHD, ∴GH=GD, ∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD, 又∵∠FBG=∠BGH,∠FBG=∠GBH, ∴BH=GH, 设DG=GH=BH=x,则FG=FD﹣GD=﹣x,HD=14﹣x, ∵GH∥FB, ∴,即, 解得x=. 故答案为:. 24.(梧州)如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A′恰好落在AC上,连接CC′,则∠ACC′= 110° . 【解答】解:∵∠A=70°,AC=BC, ∴∠BCA=40°, 根据旋转的性质,AB=BA′,BC=BC′, ∴∠α=180°﹣2×70°=40°, ∵∠∠CBC′=∠α=40°, ∴∠BCC′=70°, ∴∠ACC′=∠ACB+∠BCC′=110°; 故答案为:110°. 25.(钦州)如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB绕点O逆时针旋转90°得到△COD,则旋转过程中形成的阴影部分的面积为 . 【解答】解:将△AOB绕点O逆时针旋转90°得到△COD, 所以S△DOC=S△AOB, 可得:旋转过程中形成的阴影部分的面积=S扇形AOC+S△DOC﹣S△AOB=S扇形AOC=, 故答案为:. 26.(宁德)如图,将△ABC绕点A按顺时针方向旋转60°得△ADE,则∠BAD= 60 度. 【解答】解:∵将△ABC绕点A按顺时针方向旋转60°得△ADE, ∴∠BAD=60度. 故答案为:60. 27.(镇江)如图,将等边△OAB绕O点按逆时针方向旋转150°,得到△OA′B′(点A′,B′分别是点A,B的对应点),则∠1= 150 °. 【解答】解:∵等边△OAB绕点O按逆时针旋转了150°,得到△OA′B′, ∴∠AOA′=150°, ∵∠A′OB′=60°, ∴∠1=360°﹣∠AOA′﹣∠A′OB′=360°﹣150°﹣60°=150°, 故答案为:150. 三、解答题(共3小题) 28.(日照)如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN. (1)求证:AM=BN; (2)当MA∥CN时,试求旋转角α的余弦值. 【解答】解:(1)∵CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点, ∴CE=CF, 根据旋转的性质,CM=CE=CN=CF,∠ACM=∠BCN=α, 在△AMC和△BNC中, , ∴△AMC≌△BNC, ∴AM=BN; (2)∵MA∥CN, ∴∠ACN=∠CAM, ∵∠ACN+∠ACM=90°, ∴∠CAM+∠ACM=90°, ∴∠AMC=90°, ∴cosα===. 29.(湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D. (1)求证:BE=CF; (2)当四边形ACDE为菱形时,求BD的长. 【解答】(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的, ∴AE=AB,AF=AC,∠EAF=∠BAC, ∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC, ∵AB=AC, ∴AE=AF, ∴△AEB可由△AFC绕点A按顺时针方向旋转得到, ∴BE=CF; (2)解:∵四边形ACDE为菱形,AB=AC=1, ∴DE=AE=AC=AB=1,AC∥DE, ∴∠AEB=∠ABE,∠ABE=∠BAC=45°, ∴∠AEB=∠ABE=45°, ∴△ABE为等腰直角三角形, ∴BE=AC=, ∴BD=BE﹣DE=﹣1. 30.(雅安)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE. (1)求证:△BDE≌△BCE; (2)试判断四边形ABED的形状,并说明理由. 【解答】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得, ∴DB=CB,∠ABD=∠EBC,∠ABE=60°, ∵AB⊥EC, ∴∠ABC=90°, ∴∠DBE=∠CBE=30°, 在△BDE和△BCE中, ∵, ∴△BDE≌△BCE; (2)四边形ABED为菱形; 由(1)得△BDE≌△BCE, ∵△BAD是由△BEC旋转而得, ∴△BAD≌△BEC, ∴BA=BE,AD=EC=ED, 又∵BE=CE, ∴四边形ABED为菱形. 查看更多