- 2021-05-13 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
淮安市2016年中考数学卷
江苏省淮安市2016年初中毕业暨中等学校招生文化统一考试 数学试卷 一、选择题(本大题共8小题,每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案 1.下列四个数中最大的数是 A.-2 B.-1 C.0 D.1 2.下列图形是中心对称图形的是 A B C D 3.月球的直径约为3476000米,将3476000用科学记数法表示应为 A. 0.3476×107 B. 34.76×105 C. 3.476×107 D. 3.476×106 4.在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3、5、6、2、5、1,这组数据的众数是 A.5 B.6 C.4 D.2 5.下列运算正确的是 A. B. C. D. 6.估计的值 A.在1和2之间 B. 在2和3之间 C. 在3和4之间 D. 在4和5之间 7.已知a-b=2,则代数式2a-2b-3的值是 A.1 B.2 C.5 D.7 8.如图,在RtΔABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以M、N为圆心, 大于MN长为半径画弧,两弧交于点P,作 射线AP交边BC于点D,若CD=4,AB=15, 则ΔABD的面积为 A.15 B.30 C.45 D.60 二、填空题(本大题共有10小题,每小题3分,共30分) 9.若分式在实数范围内有意义,则x的取值范围是 . 10.分解因式:m2-4= . 11.点A(3,-2)关于x轴对称的点的坐标是 . 12.计算:3a-(2a-b)= . 13.一个不透明的袋中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是 . 14.若关于x的x2+6x+k=0一元二次方程有两个相等的实数根,则k= . 15.若点A(-2,3)、B(m,-6)都在反比例函数的图像上,则m的值是 . 16.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 . 17.若一个圆锥的底面圆的半径为2,母线长为6,则该圆锥侧面展开图的圆心角为 ° 18.如图,在RtΔABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将ΔCEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 . 三、解答题(本大题共有10小题,共96分) 19.(本小题满分10分) (1)计算 (2)解不等式组 20.(本小题满分8分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米? 21.(本小题满分8分)已知,如图,在菱形ABCD中,点E、F分别为边AC、AD的中点,连接AE、CF,求证:ΔADE≌ΔCDF 22.(本小题满分8分)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别标有数字1,2,3,4。转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在两个扇形的交线上时,重新转动转盘)。 (1)用树状图或列表等方法列出所有可能出现的结果; (2)求两个数字的积为奇数的概率。 23.(本小题满分8分)为了丰富同学的课余生活,某学校将举行“亲近大自然”户外活动。现随机抽取了部分学生进行主题为“你最想去的景点是 ”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图。 请解答下列问题: (1)本次调查的样本容量是 ; (2)补全条形统计图; (3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数。 24.(本小题满分8分)小华想测量位于池塘两端的A、B两点的距离,他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°。若直线AB与EF之间的距离为60米,求A、B两点的距离。 25.(本小题满分10分)如图,在RtΔABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A. (1)判断直线MN与⊙O的位置关系,说说明理由; (2)若OA=4,∠BCM=60°,求图中阴影部分的面积。 26.(本小题10分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同。“五一”假期,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠,优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中拆线OAB表示y2与x之间的函数关系。 (1)甲、乙两采摘园优惠前的草莓销售价格是每千克 元; (2)求y1,y2与x的函数表达式; (3)在图中画出y1与x的函数图像,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围。 27.(本小题满分12分)如图,在平面直角坐标系中,二次函数的图像与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(-4,0). (1)求该二次函数的表达式及点C的坐标; (2)点D的坐标为(0,4),点F为该二次函数在第一象限内图像上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S。 ①求S的最大值; ②在点F的运动过程中,当点E落在该二次函数图像上时,请直接写出此时S的值。 28.(本小题满分14分) 问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC、BC、CD之间的数量关系. 小吴同学探究此问题的思路是:将ΔBCD绕点D逆时针旋转90°到ΔAED处,点B、C分别落在点A、E处(如图②),易证点C、A、E在同一条直线上,并且ΔCDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD. 图① 图② 图③ 简单应用: (1)在图①中,若AC=,BC=2,则CD= . (2)如图③,AB是⊙O的直径,点C、D在⊙O上,弧AD=弧BD,若AB=13,BC=12,求CD的长。 拓展延伸: (3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m查看更多
相关文章
- 当前文档收益归属上传用户