中考数学真题分类汇编找规律

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考数学真题分类汇编找规律

一、选择题 ‎1.(2010安徽省中中考)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是…………………………………………( )‎ A)495 B)497 C)501 D)503‎ ‎【答案】A ‎2.(2010江苏盐城)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是 ‎0‎ ‎2‎ ‎8‎ ‎4‎ ‎2‎ ‎4‎ ‎6‎ ‎22‎ ‎4‎ ‎6‎ ‎8‎ ‎44‎ m ‎6‎ A.38 B.52 C.66 D.74‎ ‎【答案】D ‎3.(2010山东日照)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如: ‎ 他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是 ‎(A)15 (B)25 (C)55 (D)1225‎ ‎ ‎ ‎【答案】D ‎ ‎4.(2010山东烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是 ‎【答案】B ‎ ‎5.(2010江苏淮安)观察下列各式:‎ ‎……‎ 计算:3×(1×2+2×3+3×4+…+99×100)=‎ ‎ A.97×98×99 B.98×99×100 C.99×100×101 D.100×101×102‎ ‎【答案】C ‎ ‎6.(2010 四川绵阳)如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n,…,请你探究出前n行的点数和所满足的规律.若前n行点数和为930,则n =( ).‎ A.29 B.30‎ C.31 D.32‎ ‎【答案】B ‎ ‎7.(2010 山东淄博)如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为 输出 输入x x+3‎ x为偶数 x为奇数 ‎(第11题)‎ ‎(A)6           (B)3  ‎ ‎(C)         (D)‎ ‎【答案】B ‎ ‎8.(2010广东茂名)用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n个“口”字需用棋子 第2个“口”‎ 第1个“口”‎ 第3个“口”‎ 第n个“口”‎ ‎………………‎ ‎?‎ A.4n枚 B.(4n-4)枚 C.(4n+4)枚 D. n2枚 ‎【答案】A ‎ ‎9.(2010广东深圳)观察下列算式,用你所发现的规律得出的末位数字是( )‎ ‎21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…‎ A.2 B.4 C.6 D.8‎ ‎【答案】B ‎ ‎10.(2010广东湛江)观察下列算式:‎ ‎,‎ 通过观察,用你所发现的规律确定的个位数字是( )‎ A.3 B.9 C.7 D.1‎ ‎【答案】B ‎ ‎11.‎ 当对应所得分数为132分时,则挪动的珠子数    颗。‎ ‎【答案】12‎ 二、填空题 ‎12.(2010山东青岛)如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n个图案需要 枚棋子.‎ ‎…‎ ‎【答案】127,‎ ‎ ‎ ‎13.(2010四川眉山)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.‎ ‎……‎ ‎【答案】17‎ ‎14.(2010 嵊州市)如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….则“17”在射线 上;“2007”在射线 上。‎ ‎【答案】OE,OC ‎ ‎15.(2010江苏宿迁)直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 ▲ 个点.‎ ‎【答案】16073‎ ‎16.(2010 山东济南) 如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由点开始按的顺序沿菱形的边循环运动,行走2010厘米后停下,则这只蚂蚁停在 点.‎ C A F D E B G ‎【答案】C ‎ ‎17.(2010 浙江衢州)已知a≠0,,,,…,,‎ 则      (用含a的代数式表示).‎ ‎【答案】‎ ‎18.(2010江苏泰州)观察等式:①,②,③…按照这种规律写出第n个等式: .‎ ‎【答案】‎ ‎19. (2010重庆綦江县)观察下列正三角形的三个顶点所标的数字规律,那么2010这个数在第_______个三角形的_________顶点处(第二空填:上、左下、右下).‎ ‎【答案】670;右下 ‎20.(2010 江苏连云港)如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A1C、B1C的中第11题 AD BAD CFEBAD A1‎ A2‎ A3‎ B1‎ B2‎ B3‎ 点A2、B2,A2C、B2C的中点A3、B3,依次取下去….利用这一图形,能直观地计算出+++…+=________. ‎ ‎【答案】‎ ‎21.(2010湖南衡阳)如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中由 个基础图形组成.‎ ‎(1)‎ ‎(2)‎ ‎(3)‎ ‎……‎ ‎-‎ ‎【答案】3n+1‎ ‎22.(2010 山东莱)已知:,,,…,‎ 观察上面的计算过程,寻找规律并计算 .‎ ‎【答案】210‎ ‎23.(2010福建宁德)用m根火柴可以拼成如图1所示的x个正方形,还可以拼成如图2所示的2y个正方形,那么用含x的代数式表示y,得y=_____________.‎ ‎…‎ ‎…‎ ‎…‎ 图1‎ 图2‎ 第18题图 ‎【答案】y=x-.‎ ‎24.(2010年贵州毕节)搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管. ‎ ‎【答案】83.‎ ‎25.(2010江苏常州)如图,圆圈内分别标有0,1,2,3,4,…,11这12个数字。电子跳蚤每跳一次,可以从一个圆圈跳到相邻的圆圈,现在,一只电子跳蚤从标有数字“0”的圆圈开始,按逆时针方向跳了2010次后,落在一个圆圈中,该圆圈所标的数字是 。‎ ‎【答案】6‎ ‎26.(2010湖北荆门)观察下列计算: ‎ ‎…从计算结果中找规律,利用规律计算… 。‎ ‎【答案】 ‎ ‎27.(2010 四川成都)已知是正整数,是反比例函数图象上的一列点,其中.记,,若(是非零常数),则A1·A2·…·An的值是________________________(用含和的代数式表示).‎ ‎【答案】‎ ‎28.(2010湖南怀化)有一组数列:2,,2,,2,,2,,…… ,根据这个规律,那么第2010个数是_______. ‎ ‎【答案】-3‎ ‎29.(2010湖北荆州)用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数是 .‎ ‎ ‎ ‎【答案】3n+2‎ ‎30.(2010湖北恩施自治州)如图3,有一个形如六边形的点阵,它的中心是一个点,作为第一层,第二层每边有两个点,第三层每边有三个点,依次类推,如果层六边形点阵的总点数为331,‎ 则等于 .‎ ‎【答案】11‎ ‎31.(2010云南红河哈尼族彝族自治州) 如图4,在图(1)中,A1、B1、C1分别是△ABC的边BC、CA、AB的中点,在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1 A1、 A1B1的中点,…,按此规律,则第n个图形中平行四边形的个数共有 个.‎ ‎…‎ 图4‎ ‎【答案】3n ‎ ‎32.(2010云南楚雄)如图,用火柴摆出一列正方形图案,若按这种方式摆下去,摆出第n个图案用 根火柴棍(用含n的代数式表示)‎ ‎ ① ② ③‎ ‎【答案】2n(n+1)‎ ‎33.(2010黑龙江哈尔滨)观察下列图形:‎ ‎ 它们是按一定规律排列的,依照此规律,第9个图形中共有 个★。‎ ‎【答案】28‎ ‎34.(2010江苏徐州)用棋子按下列方式摆图形,依照此规律,第n个图形比第(n-1)个图形多_____枚棋子.‎ ‎【答案】(3n-2)‎ ‎35.(2010 福建三明)观察分析下列数据,寻找规律:0,,‎ ‎……那么第10个数据应是 。【答案】‎ ‎36.(2010 山东东营)观察下表,可以发现: 第_________个图形中的“△”的个数是“○”的个数的5倍.‎ 序号 ‎1‎ ‎2‎ ‎3‎ ‎…‎ 图 形 ‎○‎ ‎○‎ ‎△‎ ‎○‎ ‎○‎ ‎○‎ ‎○‎ ‎○‎ ‎○‎ ‎△‎ ‎△‎ ‎○‎ ‎△‎ ‎△‎ ‎○‎ ‎○‎ ‎○‎ ‎○‎ ‎○‎ ‎○‎ ‎○‎ ‎○‎ ‎△‎ ‎△‎ ‎△‎ ‎○‎ ‎△‎ ‎△‎ ‎△‎ ‎○‎ ‎○‎ ‎△‎ ‎△‎ ‎△‎ ‎○‎ ‎○‎ ‎○‎ ‎○‎ ‎…‎ ‎【答案】20‎ ‎37.(2010 湖北孝感)用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”。‎ ‎【答案】181‎ ‎38.(2010 贵州贵阳)某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,……‎ 按此规律,那么请你推测第n组应该有种子数是  ▲  粒。‎ ‎【答案】2n+1‎ ‎39.(2010 甘肃)观察:,…,则 (n=1,2,3,…). ‎ ‎【答案】‎ ‎40.(2010 重庆江津)先观察下列等式:‎ ‎ ……‎ 则计算 .‎ ‎【答案】‎ ‎41.(2010鄂尔多斯)如图,用小棒摆下面的图形,图形(1)需要3 根小棒,图形(2)需要3 根小棒,……照这样的规律继续摆下去,第n个图形需要 根小棒(用含n的代数式表示)‎ ‎【答案】4n-1‎ ‎42.(2010贵州遵义)小明玩一种挪动珠子的游戏,每次挪动珠子的颗数与对应所得的分数如下表:‎ 当对应所得分数为132分时,则挪动的珠子数    颗。‎ ‎【答案】12‎ ‎43.(2010广西柳州)2010年广州亚运会吉祥物取名“乐羊羊”.图7各图是按照一定规律排列的羊的组图,图①有1只羊,图②有3只羊,……,则图⑩有___________只羊.‎ ‎① ② ③ ④ ‎ 图7‎ ‎【答案】55‎ ‎44.(2010辽宁本溪)观察下列图形它们是按一定规律构造的,依照此规律,第100个图形中共有 个三角形.‎ 第1个图形 第2个图形 第3个图形 ‎……‎ ‎【答案】399‎ ‎45.(2010辽宁沈阳)在平面直角坐标系中,点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A9的坐标为 。‎ ‎【答案】(9,81)‎ ‎46.(2010广东肇庆)观察下列单项式:a,-2a2,4a3,-8a4,16a5,…,按此规律第n个单项式是______.(n是正整数)‎ ‎【答案】(-1)n+1nan ‎ ‎47.(2010云南曲靖)把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n次挖去后剩下的三角形 有 个。‎ ‎【答案】3n ‎ ‎48.(2010吉林).用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为________________(用含n的代数式表示)。‎ ‎【答案】‎ ‎49.(2010内蒙赤峰)观察式子:…….‎ 由此计算:…_____________.‎ ‎【答案】‎ ‎【答案】(4019, )‎ 三、解答题 ‎50.(2010山东济宁)观察下面的变形规律:‎ ‎ =1-; =-;=-;……‎ 解答下面的问题:‎ ‎(1)若n为正整数,请你猜想= ;‎ ‎(2)证明你猜想的结论;‎ ‎(3)求和:+++…+ .‎ ‎【答案】‎ ‎(1) 1分 ‎(2)证明:-=-==. 3分 ‎(3)原式=1-+-+-+…+-‎ ‎ =. 5分 ‎51.(2010浙江宁波)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式. 请你观察下列几种简单多面体模型,解答下列问题:‎ 四面体 长方体 正八面体 正十二面体 ‎ 多面体 顶点数(V)‎ 面数(F)‎ 棱数(E)‎ 四面体 ‎4‎ ‎4‎ ‎▲‎ 长方体 ‎8‎ ‎6‎ ‎12‎ 正八面体 ‎▲‎ ‎8‎ ‎12‎ 正十二面体 ‎20‎ ‎12‎ ‎30‎ (1) 根据上面多面体模型,完成表格中的空格:‎ 你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是 ▲ ;‎ ‎(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是 ▲ ;‎ ‎ (3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱. 设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y的值.‎ ‎【答案】‎ 解:(1) 6, 6 , 2分 ‎ 5分 ‎(2)20 8分 ‎ ‎ (3)这个多面体的面数为,棱数为条,‎ ‎ 根据可得 ,‎ ‎∴.  10分 ‎52.(2010广东中山)阅读下列材料:‎ ‎,‎ ‎,‎ ‎,‎ 由以上三个等式相加,可得 读完以上材料,请你计算下列各题:‎ ‎(1)(写出过程);‎ ‎(2)= ;‎ ‎(3)= .‎ ‎【答案】解:(1)‎ ‎=++…+‎ ‎=‎ ‎=440.‎ ‎(2)‎ ‎(3)‎ ‎=+‎ ‎+…+‎ ‎==1260‎ ‎53.(2010 广东汕头)阅读下列材料:‎ ‎1×2 = (1×2×3-0×1×2),‎ ‎2×3 = (2×3×4-1×2×3),‎ ‎3×4 = (3×4×5-2×3×4),‎ 由以上三个等式相加,可得 ‎1×2+2×3+3×4= ×3×4×5 = 20.‎ 读完以上材料,请你计算下列各题:‎ (1) ‎1×2+2×3+3×4+···+10×11 =__________________;(写出过程);‎ (2) ‎1×2+2×3+3×4+···+n×(n+1) = ______________;‎ (3) ‎1×2×3+2×3×4+3×4×5+···+7×8×9 = ______________.‎ ‎【答案】解:(1)∵1×2 = (1×2×3-0×1×2),‎ ‎2×3 = (2×3×4-1×2×3),‎ ‎3×4 = (3×4×5-2×3×4),‎ ‎…‎ ‎10×11 = (10×11×12-9×10×11),‎ ‎∴1×2+2×3+3×4+···+10×11=×10×11×12=440.‎ ‎(2).‎ ‎(3)1260.‎
查看更多

相关文章

您可能关注的文档