中考数学压轴题含解答与几何画板

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考数学压轴题含解答与几何画板

‎ 中考数学阅读理解类专题 ‎(北京市)25.如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为 A(-6,0),B(6,0),C(0,4)延长AC到点D,使CD=AC,过点D作DE∥AB交BC的延长线于点E. ‎ ‎(1)求D点的坐标;‎ ‎(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;‎ ‎(3)设G为y轴上一点,点P从直线y=kx+b与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.(要求:简述确定G点位置的方法,但不要求证明).‎ ‎(重庆市)26.如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.‎ ‎(1)求过点E、D、C的抛物线的解析式;‎ ‎(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为 ,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;‎ ‎(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.‎ ‎ (山西省)26.如图,已知直线l1:y=x+与直线l2:y=-2x+16相交于点C,l1、l2分别交x轴于A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且点G与点B重合.‎ ‎(1)求△ABC的面积;‎ ‎(2)求矩形DEFG的边DE与EF的长;‎ ‎(3)若矩形DEFG从原点出发,沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于的t函数关系式,并写出相应的t的取值范围.‎ ‎(重庆綦江县)26.如图,已知抛物线y=a(x-1)2+3(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.‎ ‎(1)求该抛物线的解析式;‎ ‎(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?‎ ‎(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.‎ ‎(河北省)26.如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).‎ ‎(1)当t =2时,AP= ,点Q到AC的距离是 ;‎ ‎(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)‎ ‎(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;‎ ‎(4)当DE经过点C 时,请直接写出t的值. ‎ ‎(2009年河南省)23.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. ‎ ‎(1)直接写出点A的坐标,并求出抛物线的解析式;‎ ‎(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E ‎①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?‎ ‎②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?‎ 请直接写出相应的t值.‎ ‎(山西省太原市)29. 如左图,将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.当=时,求的值.‎ 方法指导:为了求得的值,可先求BN、AM的长,不妨设:AB=2.‎ 类比归纳:在左图中,若=则的值等于 ;若=则的值等于 ;若=(n为整数),则的值等于 .(用含n的式子表示) ‎ 联系拓广:如右图将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN,设 =(m>1) =,则的值等于 .(用含m,n的式子表示)‎ ‎(江西省)25.如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作 EF∥BC交CD于点F.AB=4,BC=6,∠B=60°.‎ ‎(1)求点E到BC的距离;‎ ‎(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EP=x.‎ ‎①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;‎ ‎②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.‎ ‎(广东广州)25. 如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为.‎ ‎(1)求该二次函数的关系式;‎ ‎(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;‎ ‎(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.‎ ‎(广东省中山市)22.正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.‎ ‎(1)证明:Rt△ABM∽Rt△MCN;‎ ‎(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;‎ ‎(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.‎ ‎(哈尔滨市)28.如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.‎ ‎(1)求直线AC的解析式;‎ ‎(2)连接BM,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);‎ ‎(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.‎ ‎ ‎ ‎(山东省泰安市)26.如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.‎ ‎(1)求证:BE=AD;‎ ‎(2)求证:AC是线段ED的垂直平分线;‎ ‎(3)△DBC是等腰三角形吗?并说明理由.‎ ‎(烟台市)26.如图,抛物线y=a2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.‎ ‎(1)求抛物线对应的函数表达式;‎ ‎(2)经过C,M两点作直线与轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,求出点的坐标;若不存在,说明理由;‎ ‎(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;‎ ‎(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立?(请直接写出结论).‎ ‎(山东省日照)24.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.‎ ‎(1)求证:EG=CG;‎ ‎(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. ‎ ‎(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)‎ ‎(潍坊市)24.如图,在平面直角坐标系 xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=a2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.‎ ‎(1)求抛物线的解析式;‎ ‎(2)抛物线的对称轴交x轴于点E,连结DE,并延长DE交圆O于F,求EF的长.‎ ‎(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.‎ ‎(山东临沂市)26.如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.‎ ‎(1)求出抛物线的解析式;‎ ‎(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,说明理由;‎ ‎(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.‎ ‎ (山东省济宁市)26.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).‎ ‎(1)求边OA在旋转过程中所扫过的面积;‎ ‎(2)旋转过程中,当MN和AC平行时,求正方形OABC 旋转的度数;‎ ‎(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.‎ ‎(四川遂宁市)25.如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.‎ ‎(1)求二次函数的解析式;‎ ‎(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;‎ ‎(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.‎ ‎(四川南充市)21.如图9,已知正比例函数和反比例函数的图象都经过点A(3,3).‎ ‎(1)求正比例函数和反比例函数的解析式;‎ ‎(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;‎ ‎(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;‎ ‎(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S ?若存在,求点E的坐标;若不存在,请说明理由.‎ ‎(四川凉山州)26.如图,已知抛物线y=a2+bx+c经过A(1,0),B(0,2)两点,顶点为D.‎ ‎(1)求抛物线的解析式;‎ ‎(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;‎ ‎(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.‎ ‎(鄂州市)27.如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CE—EO|,再以CM、CO为边作矩形CMNO.‎ ‎(1)试比较EO、EC的大小,并说明理由.‎ ‎(2)令m=,请问m是否为定值?若是,请求出m的值;若不是,请说明理由 ‎(3)在(2)的条件下,若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式.‎ ‎(4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标?若不存在,请说明理由.‎ ‎(贵州安顺市)27.如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3).‎ ‎(1)求抛物线的解析式;‎ ‎(2)设抛物线顶点为D,求四边形AEDB的面积;‎ ‎(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.‎ ‎(湖北省黄石市)24、如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.‎ ‎(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 ,数量关系为 .‎ ‎②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?‎ ‎(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.‎ 试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)‎ ‎(3)若AC=4,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.‎ ‎(武汉市)25.如图,抛物线y=a2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.‎ ‎(1)求抛物线的解析式;‎ ‎(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;‎ ‎(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.‎ ‎(湖北省荆门市)25.一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.‎ ‎(1)若m为常数,求抛物线的解析式;‎ ‎(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?‎ ‎(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.‎ ‎(湖北省孝感市)25. 点P是双曲线(k1<0,x<0)上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线 (0<k2<|k1|)于E、F两点.‎ ‎(1)图1中,四边形PEOF的面积S1= ▲ (用含k1、k2的式子表示);‎ ‎(2)图2中,设P点坐标为(-4,3).‎ ‎①判断EF与AB的位置关系,并证明你的结论;‎ ‎②记S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若没有,请说明理由.‎ ‎ ‎ ‎(襄樊市)26.如图,在梯形ABCD中,AD∥BC,AD=2,BC=4点M是AD的中点,△MBC是等边三角形.‎ ‎(1)求证:梯形ABCD是等腰梯形;‎ ‎(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;‎ ‎(3)在(2)中:①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;‎ ‎②当y取最小值时,判断△PQC的形状,并说明理由. ‎ ‎(湖南省株洲市)23.如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,‎ 以P(1,0)为顶点的抛物线过点B、D.‎ ‎(1)求点A的坐标(用m表示);‎ ‎(2)求抛物线的解析式;‎ ‎(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结 BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.‎ ‎(衡阳市)26.如图,直线y=-x+4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.‎ ‎(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;‎ ‎(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?‎ ‎(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a<4),正方形OCMD与△AOB重叠部分的面积为S.试求S与a的函数关系式并画出该函数的图象.‎ ‎(湖南娄底市)25.如图在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3.‎ ‎(1)延长HF交AB于G,求△AHG的面积.‎ ‎(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH¢(如图2).探究1:在运动中,四边形CDH¢H能否为正方形?若能,请求出此时t的值;若不能,请说明理由. 探究2:在运动过程中,△ABC与直角梯形DEFH¢重叠部分的面积为y,求y与t的函数关系. ‎ ‎(陕西省)25.问题探究:‎ ‎(1)请在图①的正方形ABCD内,画出使∠APB=90°的一个点P,并说明理由.‎ ‎(2)在图②的正方形ABCD内(含边),画出使∠APB=60°的所有的点P,并说明理由.‎ 问题解决:‎ ‎(3)如图③,现在一块矩形钢板ABCD,AB=4,BC=3.工人师傅想用它裁出两块全等的、面积最大的△APB和△CP¢D钢板,且∠APB=∠CP¢D=60°.请你在图③中画出符合要求的点P和P¢,并求出△APB的面积(结果保留根号).‎ ‎(福建宁德市第26题)如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.‎ ‎(1)求P点坐标及a的值;‎ ‎(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式; ‎ ‎(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.‎ ‎(贵州省黔东南苗族侗族自治州)26.已知二次函数.‎ ‎(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.‎ ‎(2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式.‎ ‎(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.‎ B C 铅垂高 水平宽 h ‎ a ‎ 图1‎ A2‎ ‎(湖南省益阳市第20题)阅读材料:如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半. ‎ 解答下列问题:‎ 如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.‎ ‎(1)求抛物线和直线AB的解析式;‎ ‎(2)点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;‎ ‎(3)是否存在一点P,使S△PAB=S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.‎ 图2‎ x C O y A B D ‎1‎ ‎1‎ ‎(江苏省)28.如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4).动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒.‎ ‎(1)请用含t的代数式分别表示出点C与点P的坐标;‎ ‎(2)以点C为圆心、个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB.‎ ‎①当⊙C与射线DE有公共点时,求t的取值范围;‎ ‎②当△PAB为等腰三角形时,求t的值.‎ ‎ (浙江省杭州市)24. 已知平行于x轴的直线y=a(a≠0)与函数y=x和函数y=的图象分别交于点A和点B,又有定点P(2,0).‎ ‎(1)若a>0,且tan∠POB=,求线段AB的长;‎ ‎(2)在过A,B两点且顶点在直线y=x上的抛物线中,已知线段AB=,且在它的对称轴左边时,y随着x的增大而增大,试求出满足条件的抛物线的解析式;‎ ‎(3)已知经过A,B,P三点的抛物线,平移后能得到y=x2的图象,求点P到直线AB的距离.‎ ‎(台州市)24.如图,已知直线交坐标轴于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线另一个交点为E.‎ ‎(1)请直接写出点C,D的坐标; ‎ ‎(2)求抛物线的解析式;‎ ‎(3)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;‎ ‎(4)在(3)的条件下,抛物线与正方形一起平移,同时D停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.‎ ‎(浙江丽水市)24. 已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.‎ ‎(1)填空:菱形ABCD的边长是 ▲ 、面积是 ▲ 、高BE的长是 ▲ ;‎ ‎(2)探究下列问题:‎ ‎①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值; ‎ ‎②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值.‎ ‎(浙江省湖州市)24.已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M.直线分别与x轴,y轴相交于B,C两点,并且与直线AM相交于点N.‎ ‎(1)填空:试用含a的代数式分别表示点M与N的坐标,则M( , ), N( , ); ‎ ‎(2)如图,将△NAC沿y轴翻折,若点N的对应点N¢恰好落在抛物线上, AN¢与x轴交于点D,连结CD,求a的值和四边形ADCN的面积;‎ ‎(3)在抛物线y=x2-2x+a(a<0)上是否存在一点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.‎ ‎(浙江省湖州市自选题)25.若P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点叫做△ABC的费马点.‎ ‎(1)若点P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4,则PB的值为_____;‎ ‎(2)如图,在锐角△ABC外侧作等边△ACB¢连结BB¢.‎ 求证:BB¢过△ABC的费马点P,且BB¢=PA+PB+PC.‎ ‎(甘肃省兰州市)29.(本题满分9分)如左图,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.‎ ‎(1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如右图所示,请写出点Q开始运动时的坐标及点P运动速度;‎ ‎(2)求正方形边长及顶点C的坐标;‎ ‎(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;‎ ‎(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.‎ ‎(威海市)25.一次函数y=ax+b的图象分别与x轴、y轴交于点M,N,与反比例函数y=的图象相交于点A,B.过点A分别作AC⊥x轴,AE⊥y轴,垂足分别为C,E;过点B分别作BF⊥x轴,BD⊥y轴,垂足分别为F,D,AC与BD交于点K,连接CD.‎ ‎(1)若点A,B在反比例函数y=的图象的同一分支上,如左图,试证明:‎ ‎①S四边形AEDK=S四边形CFBK; ②AN=BM.‎ ‎(2)若点A,B分别在反比例函数y=的图象的不同分支上,如右图,则AN与BM还相等吗?试证明你的结论.‎ ‎ (浙江省嘉兴市)24.如图,已知A、B是线段MN上的两点,MN=4,MA=1,‎ MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.‎ ‎(1)求x的取值范围;‎ ‎(2)若△ABC为直角三角形,求x的值;‎ ‎(3)探究:△ABC的最大面积?‎ 金额w(元)‎ O 批发量m(kg)‎ ‎300‎ ‎200‎ ‎100‎ ‎20‎ ‎40‎ ‎60‎ ‎(安徽省)23.已知某种水果的批发单价与批发量的函数关系如图(1)所示.‎ ‎(1)请说明图中①、②两段函数图象的实际意义.‎ O ‎60‎ ‎20‎ ‎4‎ 批发单价(元)‎ ‎5‎ 批发量(kg)‎ ‎①‎ ‎②‎ 第23题图(1)‎ O ‎6‎ ‎2‎ ‎40‎ 日最高销量 (kg)‎ ‎80‎ 零售价(元)‎ 第23题图(2)‎ ‎4‎ ‎8‎ ‎(6,80)‎ ‎(7,40)‎ ‎(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.‎ ‎(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.‎
查看更多

相关文章

您可能关注的文档