- 2021-05-10 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学试题分类汇编解直角三角形含答案
2007年中考数学试题分类汇编(解直角三角形)含答案 一、选择题 1、(2007山东淄博)王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地 ( )D (A)m (B)100 m (C)150m (D)m 解:作出如图所示图形,则∠BAD=90°-60°=30°,AB=100,所以BD=50,cos30°=,所以,AD=50, CD=200-50=150,在Rt△ADC中, 图1 AC===100,故选(D)。 2、(2007浙江杭州)如图1,在高楼前点测得楼顶的仰角为,向高楼前进60米到点,又测得仰角为,则该高楼的高度大约为( )A A.82米 B.163米 C.52米 D.70米 3、(2007南充)一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距( ).B (A)30海里 (B)40海里 (C)50海里 (D)60海里 4、(2007江苏盐城)利用计算器求sin30°时,依次按键则计算器上显示的结果是( )A A.0.5 B.0.707 C.0.866 D.1 5、(2007山东东营)王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地 ( )D (A)150m (B)m (C)100 m (D)m 6、(2007浙江台州)一次数学活动中,小迪利用自己制作的测角器测量小山的高度.已知她的眼睛与地面的距离为1.6米,小迪在处测量时,测角器中的(量角器零度线和铅垂线的夹角,如图);然后她向小山走50米到达点处(点在同一直线上),这时测角器中的,那么小山的高度约为( ) A.68米 B.70米 C.121米 D.123米 (注:数据,供计算时选用) B 二、填空题 1、(2007山东济宁)计算的值是 。0 2、(2007湖北黄冈)计算:2sin60°= . 3、(2007湖北省天门)化简=( )。A A、 B、 C、 D、 三、解答题 1、(2007云南双柏县)如图,在某建筑物AC上,挂着“多彩云南”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为,求宣传条幅BC的长,(小明的身高不计,结果精确到0.1米) 解: ∵∠BFC =,∠BEC =,∠BCF = ∴∠EBF =∠EBC = ∴BE = EF = 20 在Rt⊿BCE中, 答:宣传条幅BC的长是17.3米。 2、(2007山东青岛)一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近? (参考数据:sin21.3°≈,tan21.3°≈, sin63.5°≈,tan63.5°≈2) B C D A 解:过C作AB的垂线,交直线AB于点D,得到Rt△ACD与Rt△BCD. 设BD=x海里, 在Rt△BCD中,tan∠CBD=, ∴CD=x ·tan63.5°. 在Rt△ACD中,AD=AB+BD=(60+x)海里,tan∠A=, ∴CD=( 60+x ) ·tan21.3°. 63° 2m A E C B D ∴x·tan63.5°=(60+x)·tan21.3°,即 . 解得,x=15. 答:轮船继续向东航行15海里,距离小岛C最近 3、(2007福建晋江)如图所示,一辆吊车的吊臂以63°的倾角倾斜于水 平面,如果这辆吊车支点A距地面的高度AB为2m,且点A到铅 垂线ED的距离为AC=15m,求吊臂的最高点E到地面的高度ED 的长(精确到0.1 m)。 答案:31.4m; 4、(2007湖南怀化)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度,标杆与旗杆的水平距离,人的眼睛与地面的高度,人与标杆的水平距离,求旗杆的高度. 解:,, ,即: , 5、(2007山东威海)如图,一条小船从港口 出发,沿北偏东方向航行海里后到达处,然后又沿北偏西方向航行海里后到达处.问此时小船距港口多少海里?(结果精确到1海里) 友情提示:以下数据可以选用:,,,. 解:过点作,垂足为点;过点分别作, ,垂足分别为点,则四边形为矩形. ,…………………………3分 , . , ; . , ; . . , . 由勾股定理,得. 即此时小船距港口约25海里 图10 6、(2007贵州贵阳)如图10,一枚运载火箭从地面处发射,当火箭到达点时,从地面处的雷达站测得的距离是,仰角是.后,火箭到达点,此时测得的距离是,仰角为,解答下列问题: (1)火箭到达点时距离发射点有多远(精确到0.01km)?(4分) (2)火箭从点到点的平均速度是多少(精确到0.1km/s)?(6分) (1)在中, 1分 (km) 3分 火箭到达点时距发射点约 4分 (2)在中, 1分 3分 5分 答:火箭从点到点的平均速度约为 7、(2007湖北潜江)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得. (1)求所测之处江的宽度(); (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形. A C B 图① 图② 解:(1)在中,, ∴(米) 答:所测之处江的宽度约为248米……………………………………………………(3分) (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识 来解决问题的,只要正确即可得分 8、(2007苏州)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66. 5°. (1)求点D与点C的高度差DH; (2)求所用不锈钢材料的总长度(即AD+AB+BC,结果精确到0.1米).(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30) 解:(1)DH=1.6×=l.2(米).(2)过B作BM⊥AH于M,则四边形BCHM是矩形. MH=BC=1 ∴AM=AH-MH=1+1.2一l=l.2. 在RtAMB中,∵∠A=66.5° ∴AB=(米). ∴S=AD+AB+BC≈1+3.0+1=5.0(米). 答:点D与点C的高度差DH为l.2米;所用不锈钢材料的总长度约为5.0米 查看更多