深圳市历年中考数学压轴题20042013

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

深圳市历年中考数学压轴题20042013

‎2004‎ ‎21、直线y= -x+m与直线y=x+2相交于y轴上的点C,与x轴分别交于点A、B。‎ ‎ (1)求A、B、C三点的坐标;(3分)‎ ‎ (2)经过上述A、B、C三点作⊙E,求∠ABC的度数,点E的坐标和⊙E的半径;(4分)‎ y C ‎·E A B O x ‎ (3)若点P是第一象限内的一动点,且点P与圆心E在直线AC的同一侧,直线PA、PC分别交⊙E于点M、N,设∠APC=θ,试求点M、N的距离(可用含θ的三角函数式表示)。(5分)‎ ‎2005‎ ‎21、已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(-1,0),P是AC上的一个动点(P与点A、C不重合)‎ ‎ (1)(2分)求点A、E的坐标;‎ ‎ (2)(2分)若y=过点A、E,求抛物线的解析式。‎ ‎ (3)(5分)连结PB、PD,设L为△PBD的周长,当L取最小值时,求点P的坐标及L的最小值,并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由。‎ A B C O D E y x ‎22、(9分)AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合。‎ A O D B H E C ‎ (1)(5分)求证:△AHD∽△CBD ‎ (2)(4分)连HO,若CD=AB=2,求HD+HO的值。‎ ‎2006年 ‎21.(10分)如图9,抛物线与轴交于、两点(点在点的左侧),抛物线上另有一点在第一象限,满足∠为直角,且恰使△∽△.‎ ‎(1)求线段的长.‎ ‎(2)求该抛物线的函数关系式.‎ ‎(3)在轴上是否存在点,使△为等腰三角形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.‎ ‎ ‎ ‎22.(10分)如图10-1,在平面直角坐标系中,点在轴的正半轴上, ⊙交轴于 两点,交轴于两点,且为的中点,交轴于点,若点的坐标为(-2,0),‎ ‎(1)求点的坐标. ‎ ‎(2)连结,求证:∥‎ ‎(3) 如图10-2,过点作⊙的切线,交轴于点.动点在⊙的圆周上运动时,的比值是否发生变化,若不变,求出比值;若变化,说明变化规律.‎ ‎ ‎ ‎2007年 ‎22.如图6,在平面直角坐标系中,正方形的边长为,点在轴的正半轴上,且,交于点.‎ ‎(1)求的度数.‎ ‎(2)求点的坐标.‎ ‎(3)求过三点的抛物线的解析式.(计算结果要求分母有理化.参考资料:把分母中的根号化去,叫分母有理化.例如:①;‎ ‎②;③等运算都是分母有理化)‎ 图6‎ ‎23.如图7,在平面直角坐标系中,抛物线与直线相交于两点.‎ ‎(1)求线段的长.‎ ‎(2)若一个扇形的周长等于(1)中线段的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少?‎ ‎(3)如图8,线段的垂直平分线分别交轴、轴于两点,垂足为点,分别求出的长,并验证等式是否成立.‎ ‎(4)如图9,在中,,,垂足为,设,,.,试说明:.‎ 图9‎ 图7‎ 图8‎ ‎2008年 ‎22.如图9,在平面直角坐标系中,二次函数的图象的顶点为D点,‎ 与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),‎ OB=OC ,tan∠ACO=.‎ ‎(1)求这个二次函数的表达式.‎ ‎(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.‎ ‎(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.‎ ‎(4)如图10,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.‎ ‎ ‎ ‎2009年 ‎22.(9分)如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.‎ ‎(1)求点B的坐标;‎ ‎(2)求经过A、O、B三点的抛物线的解析式;‎ B A O y x ‎(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.‎ ‎(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.‎ ‎23.如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.‎ ‎(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;‎ ‎(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎2010年 ‎22.(本题9分)如图9,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1, -3).‎ ‎ (1)求抛物线的解析式;(3分)‎ ‎(2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;(2分)‎ ‎(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.(4分)‎x y C B ‎_‎ D ‎_‎ A O 图9‎ ‎23.(本题9分)如图10,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线y=- x- 与⊙M相切于点H,交x轴于点E,交y轴于点F.‎ ‎ (1)请直接写出OE、⊙M的半径r、CH的长;(3分)‎ ‎(2)如图11,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3分)‎ ‎(3)如图12,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN·MK=a,如果存在,请求出a的值;如果不存在,请说明理由.(3分)‎ ‎ ‎x D A B H C E M O F 图10‎ x y D A B H C E M O F 图11‎ P Q x y D A B H C E M O F 图12‎ N T K y ‎2011年 ‎23.(本题9分)如图13,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,‎ 交y轴于点D,其中点B的坐标为(3,0)。‎ ‎(1)求抛物线的解析式;‎ ‎(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上师范存在一点H,使D、G、H、F四点所围成的四边形周长最小。若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由。‎ ‎(3)如图15,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD。若存在,求出点T的坐标;若不存在,请说明理由。‎ 图13‎ A B x y O D C 图14‎ A B x y O D C P Q E F 图15‎ A B x y O D C ‎2012年 ‎22.如图,已知△ABC的三个顶点坐标分别为A(﹣4,0)、B(1,0)、C(﹣2,6).‎ ‎(1)求经过A、B、C三点的抛物线解析式;‎ ‎(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;‎ ‎(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?‎ ‎23.如图,在平面直角坐标系中,直线l:y=﹣2x+b(b≥0)的位置随b的不同取值而变化.‎ ‎(1)已知⊙M的圆心坐标为(4,2),半径为2.‎ 当b=   时,直线l:y=﹣2x+b(b≥0)经过圆心M;‎ 当b=   时,直线l:y=﹣2x+b(b≥0)与⊙M相切;‎ ‎(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.‎ ‎2013‎ ‎22.如图6-1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线经过C、B两点,与轴的另一交点为D。‎ ‎(1)点B的坐标为( , ),抛物线的表达式为 ‎ ‎(2)如图6-2,求证:BD//AC ‎(3)如图6-3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长。‎ ‎23.如图7-1,直线AB过点A(,0),B(0,),且(其中>0,>0)。‎ ‎(1)为何值时,△OAB面积最大?最大值是多少?‎ ‎(2)如图7-2,在(1)的条件下,函数的图像与直线AB相交于C、D两点,若,求的值。‎ ‎(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿轴的正方向平移,如图7-3,设它与△OAB的重叠部分面积为S,请求出S与运动时间(秒)的函数关系式(0<<10)。‎
查看更多

相关文章

您可能关注的文档