- 2021-05-10 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学一轮复习代数篇方程与一次方程组及解法
中考复习之方程与一次方程(组)及解法 知识考点: 了解等式和方程、一元一次方程(组)的概念,掌握等式的基本性质,能正确熟练地解一元一次方程,会对方程的解进行检验。明确解方程组的基本思想是化归思想,并能用加减消元法和代入消元法解一次方程组。 精典例题: 【例1】解方程: 分析:依据方程的同解原理,突出基本步骤,去分母时防止漏乘,注意移项时要改变符号。 答案: 【例2】若关于的方程:与方程的解相同,求的值。 分析:由“解相同”的定义,将方程的解代入第一个方程,建立一个关于的方程,解之即可。 答案:=4 【例3】在代数式中,当=2,=3,=4时,它的值是零;当=-3,=-6,=4时,它的值是4;求、的值。 分析:由代数式值的定义得关于、的二元一次方程组,侧重分析如何选择使用加减法或代入法消元。 答案: 探索与创新: 【问题一】要把面值为10元的人民币换成2元或1元的零钱,现有足够的面值为2元、1元的人民币,那么共有换法( ) A、5种 B、6种 C、8种 D、10种 略解:首先把实际问题转化成数学问题,设需2元、1元的人民币各为、张(、为非负数),则有:,0≤≤5且为整数=0、1、2、3、4、5。 答案:B 【问题二】如图是某风景区的旅游路线示意图,其中B、C、D为风景点,E为两条路的交叉点,图中数据为相应两点的路程(单位:千米)。一学生从A处出发以2千米/小时的速度步行游览,每个景点的逗留时间均为0.5小时。 (1)当他沿着路线A→D→C→E→A游览回到A处时,共用了3小时,求CE的长; (2)若此学生打算从A处出发后,步行速度与在景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其它因素)。 略解: (1)设CE线长为千米,列方程可得=0.4。 (2)分A→D→C→B→E→A环线和A→D→C→E→B→E→A环线计算所用时间,前者4.1小时,后者3.9小时,故先后者。 跟踪训练: 一、填空题: 1、若∶2=∶5,则= 。 2、如果与的值互为相反数,则= 。 3、已知是方程组的解,则= 。 二、选择题: 1、若单项式与是同类项,则=( ) A、2 B、±2 C、-2 D、4 2、已知方程组与有相同的解,则、的值为( ) A、 B、 C、 D、 3、若方程组的解、满足0<<1,则的取值范围是( ) A、2<<3 B、2<<4 C、-4<<0 D、-4<<-2 4、在一次美化校园的活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人数各是多少?解题时若设支援拔草的人数有人,则下列方程中正确的是( ) A、 B、 C、 D、 三、解方程(组) 1、; 2、; 3、; 4、。 四、当=1、2、3时,的对应值分别是2、3、6,求、、的值。 五、已知、是实数,且,解关于的方程: 参考答案 一、填空题: 1、;2、;3、8 二、选择题:CDBB 三、解方程(组): 1、;2、;3、;4、; 四、 五、查看更多