中考数学常见题型几何动点问题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考数学常见题型几何动点问题

中考数学压轴题型研究(一)——动点几何问题 例1:在△ABC中,∠B=60°,BA=24CM,BC=16CM,‎ ‎(1)求△ABC的面积;‎ A C B ‎(2)现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动。如果点P的速度是4CM/秒,点Q的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ的面积是△ABC的面积的一半?‎ ‎(3)在第(2)问题前提下,P,Q两点之间的距离是多少?‎ 例2: ()已知正方形ABCD的边长是1,E为CD边的中点, P为正方形ABCD边上的一个动点,动点P从A点出发,沿A →B → C →E运动,到达点E.若点P经过的路程为自变量x,△APE的面积为函数y, ‎ ‎(1)写出y与x的关系式 ‎ ‎(2)求当y=时,x的值等于多少? ‎ 例3:如图1 ,在直角梯形ABCD中,∠B=90°,DC∥AB,动点P从B点出发,沿梯形的边由B→C → D → A 运动,设点P运动的路程为x ,△ABP的面积为y , 如果关于x 的函数y的图象如图2所示 ,那么△ABC 的面积为( )‎ x A O Q P B y A.32 B.18 C.16 D.10 ‎ 例4:直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动.(1)直接写出两点的坐标;‎ ‎(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;‎ ‎(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.‎ 例5:已知:等边三角形的边长为4厘米,长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点与点重合,点到达点时运动终止),过点分别作边的垂线,与的其它边交于两点,线段运动的时间为秒.‎ ‎(1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出该矩形的面积;‎ C P Q B A M N ‎(2)线段在运动的过程中,四边形的面积为,运动的时间为.求四边形的面积随运动时间变化的函数关系式,并写出自变量的取值范围.‎ 图(3)‎ Cc Dc Ac Bc Qc Pc Ec 例6:如图(3),在梯形中,厘米,厘米,的坡度动点从出发以2厘米/秒的速度沿方向向点运动,动点从点出发以3厘米/秒的速度沿方向向点运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为秒.‎ ‎(1)求边的长;‎ ‎(2)当为何值时,与相互平分;‎ ‎(3)连结设的面积为探求与的函数关系式,求为何值时,有最大值?最大值是多少?‎ 二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。‎ A Q C D B P ‎ 例7:如图,已知中,厘米,厘米,点为的中点.‎ ‎(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.‎ ‎①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;‎ ‎②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?‎ ‎(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?‎ 例8:如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为秒.‎ ‎(1)求的长.‎ ‎(2)当时,求的值.‎ ‎(3)试探究:为何值时,为等腰三角形.‎ 例9:(如图,在直角梯形ABCD中,AD∥BC,∠ABC=90º,AB=12cm,AD=8cm,BC=22cm,AB为⊙O 的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动,P、Q分别从点A、C同时出发,当其中一点到达端 点时,另一个动点也随之停止运动.设运动时间为t(s).‎ ‎(1)当t为何值时,四边形PQCD为平行四边形?‎ A B O C D P Q ‎(2)当t为何值时,PQ与⊙O相切?‎ O A P D B Q C 例10. 如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(),则AP=2xcm,CM=3xcm,DN=x2cm.‎ ‎(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;‎ ‎(2)当x 为何值时,以P,Q,M,N为顶点的四边形是平行四边形;‎ ‎(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.‎ A B D C P Q M N ‎(第25题)‎ ‎ ‎ 练习1‎ B C P O D Q A B P C O D Q A ‎1.正方形的边长为,在对称中心处有一钉子.动点,同时从点出发,点沿方向以每秒的速度运动,到点停止,点沿方向以每秒的速度运动,到点停止.,两点用一条可伸缩的细橡皮筋联结,设秒后橡皮筋扫过的面积为.‎ ‎(1)当时,求与之间的函数关系式;‎ ‎(2)当橡皮筋刚好触及钉子时,求值;‎ ‎(3)当时,求与之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时的变化范围;‎ ‎(4)当时,请在给出的直角坐标系中画出与之间的函数图象.‎ ‎[解] (1)当时,,,,‎ 即. ‎ ‎(2)当时,橡皮筋刚好触及钉子,‎ ‎,,,. ‎ ‎(3)当时,,‎ ‎,,‎ ‎,‎ 即. ‎ 作,为垂足.‎ 当时,,,,‎ ‎,即.‎ ‎ 或 ‎(4)如图所示:‎ ‎2.如图,平面直角坐标系中,直线AB与轴,轴分别交于A(3,0),B(0,)两点, ,点C为线段AB上的一动点,过点C作CD⊥轴于点D.‎ ‎(1)求直线AB的解析式;‎ ‎(2)若S梯形OBCD=,求点C的坐标;‎ ‎(3)在第一象限内是否存在点P,使得以P,O,B为顶点的 三角形与△OBA相似.若存在,请求出所有符合条件 的点P的坐标;若不存在,请说明理由.‎ ‎[解] (1)直线AB解析式为:y=x+. ‎ ‎(2)方法一:设点C坐标为(x,x+),那么OD=x,CD=x+.  ‎ ‎∴==.‎ 由题意: =,解得(舍去)‎ ‎∴ C(2,)‎ 方法二:∵ ,=,∴.‎ 由OA=OB,得∠BAO=30°,AD=CD.‎ ‎∴ =CD×AD==.可得CD=. ‎ ‎∴ AD=1,OD=2.∴C(2,).‎ ‎(3)当∠OBP=Rt∠时,如图 ‎ ①若△BOP∽△OBA,则∠BOP=∠BAO=30°,BP=OB=3,‎ ‎∴(3,).‎ ‎ ②若△BPO∽△OBA,则∠BPO=∠BAO=30°,OP=OB=1.‎ ‎∴(1,).‎ 当∠OPB=Rt∠时 ‎③ 过点P作OP⊥BC于点P(如图),此时△PBO∽△OBA,∠BOP=∠BAO=30°‎ 过点P作PM⊥OA于点M.‎ 方法一: 在Rt△PBO中,BP=OB=,OP=BP=.‎ ‎∵ 在Rt△PMO中,∠OPM=30°,‎ ‎∴ OM=OP=;PM=OM=.∴(,).‎ 方法二:设P(x ,x+),得OM=x ,PM=x+‎ 由∠BOP=∠BAO,得∠POM=∠ABO.‎ ‎∵tan∠POM=== ,tan∠ABOC==.‎ ‎∴x+=x,解得x=.此时,(,). ‎ ‎④若△POB∽△OBA(如图),则∠OBP=∠BAO=30°,∠POM=30°.   ‎ ‎   ∴ PM=OM=.‎ ‎∴ (,)(由对称性也可得到点的坐标).‎ 当∠OPB=Rt∠时,点P在x轴上,不符合要求.‎ 综合得,符合条件的点有四个,分别是:‎ ‎(3,),(1,),(,),(,).‎ ‎3.如图所示,在平面直角坐标中,四边形OABC是等腰梯形,BC∥OA,OA=7,AB=4,∠ COA=60°,点P为x轴上的—个动点,点P不与点0、点A重合.连结CP,过点P作PD交AB于点D.‎ ‎ (1)求点B的坐标;‎ ‎ (2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;‎ ‎(3)当点P运动什么位置时,使得∠CPD=∠OAB,且=,求这时点P的坐标。‎ ‎[解] (1)作BQ⊥x轴于Q.‎ ‎∵ 四边形ABCD是等腰梯形,‎ ‎∴∠BAQ=∠COA=60°‎ 在RtΔBQA中,BA=4,‎ ‎∴BQ=AB·sin∠BAO=4×sin60°=‎ AQ=AB·cos∠BAO=4×cos60°=2,‎ ‎∴OQ=OA-AQ=7-2=5‎ ‎∵点B在第一象限内,‎ ‎∴点B的的坐标为(5, )‎ ‎(2)若ΔOCP为等腰三角形,∵∠COP=60°,‎ 此时ΔOCP为等边三角形或是顶角为120°的等腰三角形 若ΔOCP为等边三角形,OP=OC=PC=4,且点P在x轴的正半轴上,‎ ‎∴点P的坐标为(4,0)‎ 若ΔOCP是顶角为120°的等腰三角形,则点P在x轴的负半轴上,且OP=OC=4‎ ‎∴点P的坐标为(-4,0)‎ ‎∴点P的坐标为(4,0)或(-4,0)‎ ‎(3)若∠CPD=∠OAB ‎∵∠CPA=∠OCP+∠COP 而∠OAB=∠COP=60°,‎ ‎∴∠OCP=∠DPA 此时ΔOCP∽ΔADP ‎∴‎ ‎∵‎ ‎∴,‎ AD=AB-BD=4-=‎ AP=OA-OP=7-OP ‎∴‎ 得OP=1或6‎ ‎∴点P坐标为(1,0)或(6,0).‎ 图①‎ B A Q P C H 4. 已知:如图①,在RtΔABC中,∠C=900,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0
查看更多