山东省枣庄市中考数学试卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

山东省枣庄市中考数学试卷

‎2016年山东省枣庄市中考数学试卷 ‎ ‎ 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。‎ ‎1.(3分)(2016•枣庄)下列计算,正确的是(  )‎ A.a2•a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+1‎ ‎2.(3分)(2016•枣庄)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是(  )‎ A.75°36′ B.75°12′ C.74°36′ D.74°12′‎ ‎3.(3分)(2016•枣庄)某中学篮球队12名队员的年龄如表:‎ 年龄(岁)‎ ‎13‎ ‎14‎ ‎15‎ ‎16‎ 人数 ‎1‎ ‎5‎ ‎4‎ ‎2‎ 关于这12名队员年龄的年龄,下列说法错误的是(  )‎ A.众数是14 B.极差是3 C.中位数是14.5 D.平均数是14.8‎ ‎4.(3分)(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为(  )‎ A.15° B.17.5° C.20° D.22.5°‎ ‎5.(3分)(2016•枣庄)已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为(  )‎ A.5 B.﹣1 C.2 D.﹣5‎ ‎6.(3分)(2016•枣庄)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是(  )‎ A.白 B.红 C.黄 D.黑 ‎7.(3分)(2016•枣庄)如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是(  )‎ A.3 B.4 C.5.5 D.10‎ ‎8.(3分)(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是(  )‎ A. B. C. D.‎ ‎9.(3分)(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于(  )‎ A. B. C.5 D.4‎ ‎10.(3分)(2016•枣庄)已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是(  )‎ A. B. C. D.‎ ‎11.(3分)(2016•枣庄)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分的面积为(  )‎ A.2π B.π C. D.‎ ‎12.(3分)(2016•枣庄)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有(  )‎ A.1个 B.2个 C.3个 D.4个 ‎ ‎ 二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。‎ ‎13.(4分)(2016•枣庄)计算:﹣2﹣1+﹣|﹣2|=______.‎ ‎14.(4分)(2016•枣庄)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为______米(结果精确到0.1米,参考数据:=1.41,=1.73).‎ ‎15.(4分)(2016•枣庄)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD=______.‎ ‎16.(4分)(2016•枣庄)如图,点A的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为______.‎ ‎17.(4分)(2016•枣庄)如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=______.‎ ‎18.(4分)(2016•枣庄)一列数a1,a2,a3,…满足条件:a1=,an=(n≥2,且n为整数),则a2016=______.‎ ‎ ‎ 三、解答题:本大题共7小题,满分60分,解答时,要写出必要的文字说明、证明过程或演算步骤。‎ ‎19.(8分)(2016•枣庄)先化简,再求值:,其中a是方程2x2+x﹣3=0的解.‎ ‎20.(8分)(2016•枣庄)Pn表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么Pn与n的关系式是:Pn=•(n2﹣an+b)(其中a,b是常数,n≥4)‎ ‎(1)通过画图,可得:四边形时,P4=______;五边形时,P5=______‎ ‎(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.‎ ‎21.(8分)(2016•枣庄)小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户具名的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表:‎ ‎ 月均用水量 ‎ 2≤x<3‎ ‎ 3≤x<4‎ ‎ 4≤x<5‎ ‎ 5≤x<6‎ ‎ 6≤x<7‎ ‎ 7≤x<8‎ ‎ 8≤x<9‎ ‎ 频数 ‎ 2‎ ‎ 12‎ ‎ ①‎ ‎ 10‎ ‎ ②‎ ‎ 3‎ ‎ 2‎ ‎ 百分比 ‎ 4%‎ ‎ 24%‎ ‎30%‎ ‎ 20%‎ ‎ ③‎ ‎ 6%‎ ‎ 4%‎ ‎(1)请根据题中已有的信息补全频数分布:①______,②______,③______;‎ ‎(2)如果家庭月均用水量在5≤x<8范围内为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?‎ ‎(3)记月均用水量在2≤x<3范围内的两户为a1,a2,在7≤x<8范围内的3户b1、b2、b3,从这5户家庭中任意抽取2户,试完成下表,并求出抽取出的2户家庭来自不同范围的概率.‎ ‎ a1‎ ‎ a2‎ ‎ b1‎ ‎ b2‎ ‎ b3‎ ‎ a1‎ ‎ a2‎ ‎ b1‎ ‎ b2‎ ‎ b3‎ ‎22.(8分)(2016•枣庄)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.‎ ‎(1)当F为AB的中点时,求该函数的解析式;‎ ‎(2)当k为何值时,△EFA的面积最大,最大面积是多少?‎ ‎23.(8分)(2016•枣庄)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.‎ ‎(1)求证:PB是⊙O的切线;‎ ‎(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.‎ ‎24.(10分)(2016•枣庄)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.‎ ‎(1)求∠EPF的大小;‎ ‎(2)若AP=10,求AE+AF的值;‎ ‎(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.‎ ‎25.(10分)(2016•枣庄)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.‎ ‎(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;‎ ‎(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;‎ ‎(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.‎ ‎ ‎ ‎2016年山东省枣庄市中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。‎ ‎1.(3分)(2016•枣庄)下列计算,正确的是(  )‎ A.a2•a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+1‎ ‎【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.‎ ‎【解答】解:A、a2•a2=a4,故此选项错误;‎ B、a2+a2=2a2,故此选项错误;‎ C、(﹣a2)2=a4,故此选项正确;‎ D、(a+1)2=a2+2a+1,故此选项错误;‎ 故选:C.‎ ‎ ‎ ‎2.(3分)(2016•枣庄)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是(  )‎ A.75°36′ B.75°12′ C.74°36′ D.74°12′‎ ‎【分析】过点D作DF⊥AO交OB于点F.根据题意知,DF是∠CDE的角平分线,故∠1=∠3;然后又由两直线CD∥OB推知内错角∠1=∠2;最后由三角形的内角和定理求得∠DEB的度数.‎ ‎【解答】解:过点D作DF⊥AO交OB于点F.‎ ‎∵入射角等于反射角,‎ ‎∴∠1=∠3,‎ ‎∵CD∥OB,‎ ‎∴∠1=∠2(两直线平行,内错角相等);‎ ‎∴∠2=∠3(等量代换);‎ 在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,‎ ‎∴∠2=90°﹣37°36′=52°24′;‎ ‎∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.‎ 故选B.‎ ‎ ‎ ‎3.(3分)(2016•枣庄)某中学篮球队12名队员的年龄如表:‎ 年龄(岁)‎ ‎13‎ ‎14‎ ‎15‎ ‎16‎ 人数 ‎1‎ ‎5‎ ‎4‎ ‎2‎ 关于这12名队员年龄的年龄,下列说法错误的是(  )‎ A.众数是14 B.极差是3 C.中位数是14.5 D.平均数是14.8‎ ‎【分析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.‎ ‎【解答】解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;‎ 极差是:16﹣13=3,故选项B正确,不合题意;‎ 中位数是:14.5,故选项C正确,不合题意;‎ 平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.‎ 故选:D.‎ ‎ ‎ ‎4.(3分)(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为(  )‎ A.15° B.17.5° C.20° D.22.5°‎ ‎【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.‎ ‎【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,‎ ‎∴∠1=∠2,∠3=∠4,‎ ‎∵∠ACE=∠A+∠ABC,‎ 即∠1+∠2=∠3+∠4+∠A,‎ ‎∴2∠1=2∠3+∠A,‎ ‎∵∠1=∠3+∠D,‎ ‎∴∠D=∠A=×30°=15°.‎ 故选A.‎ ‎ ‎ ‎5.(3分)(2016•枣庄)已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为(  )‎ A.5 B.﹣1 C.2 D.﹣5‎ ‎【分析】根据关于x的方程x2+3x+a=0有一个根为﹣2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.‎ ‎【解答】解:∵关于x的方程x2+3x+a=0有一个根为﹣2,设另一个根为m,‎ ‎∴﹣2+m=,‎ 解得,m=﹣1,‎ 故选B.‎ ‎ ‎ ‎6.(3分)(2016•枣庄)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是(  )‎ A.白 B.红 C.黄 D.黑 ‎【分析】根据图形可得涂有绿色一面的邻边是白,黑,红,蓝,即可得到结论.‎ ‎【解答】解:∵涂有绿色一面的邻边是白,黑,红,蓝,‎ ‎∴涂成绿色一面的对面的颜色是黄色,‎ 故选C.‎ ‎ ‎ ‎7.(3分)(2016•枣庄)如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是(  )‎ A.3 B.4 C.5.5 D.10‎ ‎【分析】过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是4,得出选项即可.‎ ‎【解答】解:如图:‎ 过B作BN⊥AC于N,BM⊥AD于M,‎ ‎∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,‎ ‎∴∠C′AB=∠CAB,‎ ‎∴BN=BM,‎ ‎∵△ABC的面积等于6,边AC=3,‎ ‎∴×AC×BN=6,‎ ‎∴BN=4,‎ ‎∴BM=4,‎ 即点B到AD的最短距离是4,‎ ‎∴BP的长不小于4,‎ 即只有选项A的3不正确,‎ 故选A.‎ ‎ ‎ ‎8.(3分)(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是(  )‎ A. B. C. D.‎ ‎【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.‎ ‎【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,‎ ‎∴△=4﹣4(kb+1)>0,‎ 解得kb<0,‎ A.k>0,b>0,即kb>0,故A不正确;‎ B.k>0,b<0,即kb<0,故B正确;‎ C.k<0,b<0,即kb>0,故C不正确;‎ D.k>0,b=0,即kb=0,故D不正确;‎ 故选:B.‎ ‎ ‎ ‎9.(3分)(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于(  )‎ A. B. C.5 D.4‎ ‎【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.‎ ‎【解答】解:‎ ‎∵四边形ABCD是菱形,‎ ‎∴AO=OC,BO=OD,AC⊥BD,‎ ‎∵AC=8,DB=6,‎ ‎∴AO=4,OB=3,∠AOB=90°,‎ 由勾股定理得:AB==5,‎ ‎∵S菱形ABCD=,‎ ‎∴,‎ ‎∴DH=,‎ 故选A.‎ ‎ ‎ ‎10.(3分)(2016•枣庄)已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是(  )‎ A. B. C. D.‎ ‎【分析】根据关于原点对称点的性质得出对应点坐标,再利用第四象限点的坐标性质得出答案.‎ ‎【解答】解:∵点P(a+1,﹣+1)关于原点的对称点坐标为:(﹣a﹣1,﹣1),该点在第四象限,‎ ‎∴,‎ 解得:a<﹣1,‎ 则a的取值范围在数轴上表示为:‎ ‎.‎ 故选:C.‎ ‎ ‎ ‎11.(3分)(2016•枣庄)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分的面积为(  )‎ A.2π B.π C. D.‎ ‎【分析】要求阴影部分的面积,由图可知,阴影部分的面积等于扇形COB的面积,根据已知条件可以得到扇形COB的面积,本题得以解决.‎ ‎【解答】解:∵∠CDB=30°,‎ ‎∴∠COB=60°,‎ 又∵弦CD⊥AB,CD=2,‎ ‎∴OC=,‎ ‎∴,‎ 故选D.‎ ‎ ‎ ‎12.(3分)(2016•枣庄)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有(  )‎ A.1个 B.2个 C.3个 D.4个 ‎【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣,可得﹣,b<0,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.‎ ‎【解答】解:∵二次函数y=ax2+bx+c图象经过原点,‎ ‎∴c=0,‎ ‎∴abc=0‎ ‎∴①正确;‎ ‎∵x=1时,y<0,‎ ‎∴a+b+c<0,‎ ‎∴②不正确;‎ ‎∵抛物线开口向下,‎ ‎∴a<0,‎ ‎∵抛物线的对称轴是x=﹣,‎ ‎∴﹣,b<0,‎ ‎∴b=3a,‎ 又∵a<0,b<0,‎ ‎∴a>b,‎ ‎∴③正确;‎ ‎∵二次函数y=ax2+bx+c图象与x轴有两个交点,‎ ‎∴△>0,‎ ‎∴b2﹣4ac>0,4ac﹣b2<0,‎ ‎∴④正确;‎ 综上,可得 正确结论有3个:①③④.‎ 故选:C.‎ ‎ ‎ 二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。‎ ‎13.(4分)(2016•枣庄)计算:﹣2﹣1+﹣|﹣2|= 2 .‎ ‎【分析】直接利用负整数指数幂的性质以及结合绝对值的性质和二次根式的性质分别化简求出答案.‎ ‎【解答】解:﹣2﹣1+﹣|﹣2|‎ ‎=3﹣+2﹣2‎ ‎=2.‎ 故答案为:2.‎ ‎ ‎ ‎14.(4分)(2016•枣庄)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为 2.9 米(结果精确到0.1米,参考数据:=1.41,=1.73).‎ ‎【分析】首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.‎ ‎【解答】解:由题意可得:∵AM=4米,∠MAD=45°,‎ ‎∴DM=4m,‎ ‎∵AM=4米,AB=8米,‎ ‎∴MB=12米,‎ ‎∵∠MBC=30°,‎ ‎∴BC=2MC,‎ ‎∴MC2+MB2=(2MC)2,‎ MC2+122=(2MC)2,‎ ‎∴MC=4,‎ 则DC=4﹣4≈2.9(米),‎ 故答案为:2.9.‎ ‎ ‎ ‎15.(4分)(2016•枣庄)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD= 2 .‎ ‎【分析】连接BC可得RT△ACB,由勾股定理求得BC的长,进而由tanD=tanA=可得答案.‎ ‎【解答】解:如图,连接BC,‎ ‎∵AB是⊙O的直径,‎ ‎∴∠ACB=90°,‎ ‎∵AB=6,AC=2,‎ ‎∴BC===4,‎ 又∵∠D=∠A,‎ ‎∴tanD=tanA===2.‎ 故答案为:2.‎ ‎ ‎ ‎16.(4分)(2016•枣庄)如图,点A的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为  .‎ ‎【分析】由直线y=x+n与坐标轴交于点B,C,得B点的坐标为(﹣n,0),C点的坐标为(0,n),由A点的坐标为(﹣4,0),∠ACD=90°,用勾股定理列出方程求出n的值.‎ ‎【解答】解:∵直线y=x+n与坐标轴交于点B,C,‎ ‎∴B点的坐标为(﹣n,0),C点的坐标为(0,n),‎ ‎∵A点的坐标为(﹣4,0),∠ACD=90°,‎ ‎∴AB2=AC2+BC2,‎ ‎∵AC2=AO2+OC2,BC2=0B2+0C2,‎ ‎∴AB2=AO2+OC2+0B2+0C2,‎ 即(﹣n+4)2=42+n2+(﹣n)2+n2‎ 解得n=﹣,n=0(舍去).‎ 故答案为:.‎ ‎ ‎ ‎17.(4分)(2016•枣庄)如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ﹣1 .‎ ‎【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.‎ ‎【解答】解:如图,连接BB′,‎ ‎∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,‎ ‎∴AB=AB′,∠BAB′=60°,‎ ‎∴△ABB′是等边三角形,‎ ‎∴AB=BB′,‎ 在△ABC′和△B′BC′中,‎ ‎,‎ ‎∴△ABC′≌△B′BC′(SSS),‎ ‎∴∠ABC′=∠B′BC′,‎ 延长BC′交AB′于D,‎ 则BD⊥AB′,‎ ‎∵∠C=90°,AC=BC=,‎ ‎∴AB==2,‎ ‎∴BD=2×=,‎ C′D=×2=1,‎ ‎∴BC′=BD﹣C′D=﹣1.‎ 故答案为:﹣1.‎ ‎ ‎ ‎18.(4分)(2016•枣庄)一列数a1,a2,a3,…满足条件:a1=,an=(n≥2,且n为整数),则a2016= ﹣1 .‎ ‎【分析】根据题意求出a1,a2,a3,…的值,找出循环规律即可求解.‎ ‎【解答】解:a1=,a2==2,a3==﹣1,a4==…‎ 可以发现:数列以,2,﹣1循环出现,‎ ‎2016÷3=672,‎ 所以a2016=﹣1.‎ 故答案为﹣1.‎ ‎ ‎ 三、解答题:本大题共7小题,满分60分,解答时,要写出必要的文字说明、证明过程或演算步骤。‎ ‎19.(8分)(2016•枣庄)先化简,再求值:,其中a是方程2x2+x﹣3=0的解.‎ ‎【分析】先化简代数式、解方程,然后结合分式的性质对a的值进行取舍,并代入求值即可.‎ ‎【解答】解:原式=÷,‎ ‎=•,‎ ‎=.‎ 由2x2+x﹣3=0得到:x1=1,x2=﹣,‎ 又a﹣1≠0即a≠1,‎ 所以a=﹣,‎ 所以原式==﹣.‎ ‎ ‎ ‎20.(8分)(2016•枣庄)Pn表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么Pn与n的关系式是:Pn=•(n2﹣an+b)(其中a,b是常数,n≥4)‎ ‎(1)通过画图,可得:四边形时,P4= 1 ;五边形时,P5= 5 ‎ ‎(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.‎ ‎【分析】(1)依题意画出图形,数出图形中对角线交点的个数即可得出结论;‎ ‎(2)将(1)中的数值代入公式可得出关于a、b的二元一次方程组,解方程组即可得出结论.‎ ‎【解答】解:(1)画出图形如下.‎ 由画形,可得:‎ 当n=4时,P4=1;当n=5时,P5=5.‎ 故答案为:1;5.‎ ‎(2)将(1)中的数值代入公式,‎ 得:,‎ 解得:.‎ ‎ ‎ ‎21.(8分)(2016•枣庄)小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户具名的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表:‎ ‎ 月均用水量 ‎ 2≤x<3‎ ‎ 3≤x<4‎ ‎ 4≤x<5‎ ‎ 5≤x<6‎ ‎ 6≤x<7‎ ‎ 7≤x<8‎ ‎ 8≤x<9‎ ‎ 频数 ‎ 2‎ ‎ 12‎ ‎ ①‎ ‎ 10‎ ‎ ②‎ ‎ 3‎ ‎ 2‎ ‎ 百分比 ‎ 4%‎ ‎ 24%‎ ‎30%‎ ‎ 20%‎ ‎ ③‎ ‎ 6%‎ ‎ 4%‎ ‎(1)请根据题中已有的信息补全频数分布:① 15 ,② 6 ,③ 12% ;‎ ‎(2)如果家庭月均用水量在5≤x<8范围内为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?‎ ‎(3)记月均用水量在2≤x<3范围内的两户为a1,a2,在7≤x<8范围内的3户b1、b2、b3,从这5户家庭中任意抽取2户,试完成下表,并求出抽取出的2户家庭来自不同范围的概率.‎ ‎ a1‎ ‎ a2‎ ‎ b1‎ ‎ b2‎ ‎ b3‎ ‎ a1‎ ‎ a2‎ ‎ b1‎ ‎ b2‎ ‎ b3‎ ‎【分析】(1)根据频数的相关知识列式计算即可.‎ ‎(2)用总体乘以样本中中等用水量家庭的百分比即可;‎ ‎(3)先完成表格,再求概率即可.‎ ‎【解答】解:(1)①50×30%=15,‎ ‎②50﹣2﹣12﹣15﹣10﹣3﹣2=6,‎ ‎③6÷50=0.12=12%,‎ 故答案为:15,6,12%;‎ ‎(2)中等用水量家庭大约有450×(20%+12%+6%)=171(户);‎ ‎(3)‎ 抽取出的2户家庭来自不同范围的概率:‎ P==.‎ ‎ ‎ ‎22.(8分)(2016•枣庄)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.‎ ‎(1)当F为AB的中点时,求该函数的解析式;‎ ‎(2)当k为何值时,△EFA的面积最大,最大面积是多少?‎ ‎【分析】(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;‎ ‎(2)根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.‎ ‎【解答】解:(1)∵在矩形OABC中,OA=3,OC=2,‎ ‎∴B(3,2),‎ ‎∵F为AB的中点,‎ ‎∴F(3,1),‎ ‎∵点F在反比例函数y=(k>0)的图象上,‎ ‎∴k=3,‎ ‎∴该函数的解析式为y=(x>0);‎ ‎(2)由题意知E,F两点坐标分别为E(,2),F(3,),‎ ‎∴S△EFA=AF•BE=×k(3﹣k),‎ ‎=k﹣k2‎ ‎=﹣(k2﹣6k+9﹣9)‎ ‎=﹣(k﹣3)2+‎ 当k=3时,S有最大值.‎ S最大值=.‎ ‎ ‎ ‎23.(8分)(2016•枣庄)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.‎ ‎(1)求证:PB是⊙O的切线;‎ ‎(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.‎ ‎【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;‎ ‎(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.‎ ‎【解答】(1)证明:连接OB,如图所示:‎ ‎∵AC是⊙O的直径,‎ ‎∴∠ABC=90°,‎ ‎∴∠C+∠BAC=90°,‎ ‎∵OA=OB,‎ ‎∴∠BAC=∠OBA,‎ ‎∵∠PBA=∠C,‎ ‎∴∠PBA+∠OBA=90°,‎ 即PB⊥OB,‎ ‎∴PB是⊙O的切线;‎ ‎(2)解:∵⊙O的半径为2,‎ ‎∴OB=2,AC=4,‎ ‎∵OP∥BC,‎ ‎∴∠C=∠BOP,‎ 又∵∠ABC=∠PBO=90°,‎ ‎∴△ABC∽△PBO,‎ ‎∴,‎ 即,‎ ‎∴BC=2.‎ ‎ ‎ ‎24.(10分)(2016•枣庄)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.‎ ‎(1)求∠EPF的大小;‎ ‎(2)若AP=10,求AE+AF的值;‎ ‎(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.‎ ‎【分析】(1)根据锐角三角函数求出∠FPG,最后求出∠EPF.‎ ‎(2)先判断出Rt△PME≌Rt△PNF,再根据锐角三角函数求解即可,‎ ‎(3)根据运动情况及菱形的性质判断求出AP最大和最小值.‎ ‎【解答】解:(1)过点P作PG⊥EF于点G,如图1所示.‎ ‎∵PE=PF=6,EF=6,‎ ‎∴FG=EG=3,∠FPG=∠EPG=∠EPF.‎ 在Rt△FPG中,sin∠FPG===,‎ ‎∴∠FPG=60°,‎ ‎∴∠EPF=120°.‎ ‎(2)过点P作PM⊥AB于点M,作PN⊥AD于点N,如图2所示.‎ ‎∵AC为菱形ABCD的对角线,‎ ‎∴∠DAC=∠BAC,AM=AN,PM=PN.‎ 在Rt△PME和Rt△PNF中,PM=PN,PE=PF,‎ ‎∴Rt△PME≌Rt△PNF,‎ ‎∴ME=NF.‎ 又AP=10,∠PAM=∠DAB=30°,‎ ‎∴AM=AN=APcos30°=10×=5,‎ ‎∴AE+AF=(AM+ME)+(AN﹣NF)=AM+AN=10.‎ ‎(3)如图,‎ 当△EFP的三个顶点分别在AB,AD,AC上运动,点P在P1,P之间运动,‎ ‎∴P1O=PO=3,AO=9,‎ ‎∴AP的最大值为12,AP的最小值为6,‎ ‎ ‎ ‎25.(10分)(2016•枣庄)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.‎ ‎(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;‎ ‎(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;‎ ‎(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.‎ ‎【分析】(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;‎ ‎(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得y的值,即可求出点M坐标;‎ ‎(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.‎ ‎【解答】解:(1)依题意得:,‎ 解之得:,‎ ‎∴抛物线解析式为y=﹣x2﹣2x+3‎ ‎∵对称轴为x=﹣1,且抛物线经过A(1,0),‎ ‎∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,‎ 得,‎ 解之得:,‎ ‎∴直线y=mx+n的解析式为y=x+3;‎ ‎(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.‎ 把x=﹣1代入直线y=x+3得,y=2,‎ ‎∴M(﹣1,2),‎ 即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);‎ ‎(3)设P(﹣1,t),‎ 又∵B(﹣3,0),C(0,3),‎ ‎∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,‎ ‎①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;‎ ‎②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,‎ ‎③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;‎ 综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,) 或(﹣1,).‎ ‎ ‎ 参与本试卷答题和审题的老师有:三界无我;HLing;sd2011;1987483819;zgm666;王学峰;wdzyzmsy@126.com;1286697702;zjx111;gbl210;放飞梦想;冯新明;nhx600;曹先生;守拙;星月相随;wd1899(排名不分先后)‎ 菁优网 ‎2016年9月21日
查看更多

相关文章

您可能关注的文档