2017中考数学精选压轴题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2017中考数学精选压轴题

陕西2014年中考数学精选压轴题 ‎【001】如图,已知抛物线(a≠0)经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结. ‎ ‎(1)求该抛物线的解析式;‎ ‎(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?‎ x y M C D P Q O A B ‎(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长.‎ ‎ ‎ ‎【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).‎ ‎(1)当t = 2时,AP = ,点Q到AC的距离是 ;‎ ‎(2)在点P从C向A运动的过程中,求△APQ的面积S与 t的函数关系式;(不必写出t的取值范围)‎ A C B P Q E D 图16‎ ‎(3)在点E从B向C运动的过程中,四边形QBED能否成 为直角梯形?若能,求t的值.若不能,请说明理由;‎ ‎(4)当DE经过点C 时,请直接写出t的值. ‎ ‎【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. ‎ ‎(1)直接写出点A的坐标,并求出抛物线的解析式;‎ ‎ (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?‎ ‎②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?‎ 请直接写出相应的t值。‎ ‎【004】如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.‎ ‎ (1)求的面积;‎ ‎(2)求矩形的边与的长;‎ ‎(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,‎ 设移动时间为秒,矩形与重叠部分的面积为,求关 的函数关系式,并写出相应的的取值范围.‎ A D B E O C F x y y ‎(G)‎ ‎(第4题)‎ ‎【005】如图1,在等腰梯形中,,是的中点,过点作交于点.,.‎ ‎(1)求点到的距离;‎ ‎(2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设.‎ ‎①当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由;‎ ‎②当点在线段上时(如图3),是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.‎ A D E B F C 图4(备用)‎ A D E B F C 图5(备用)‎ A D E B F C 图1‎ 图2‎ A D E B F C P N M 图3‎ A D E B F C P N M ‎(第25题)‎ ‎【006】如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为。‎ ‎(1)求该二次函数的关系式;‎ ‎(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;‎ ‎(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。‎ ‎【007】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),‎ 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.‎ ‎ (1)求直线AC的解析式;‎ ‎ (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);‎ ‎ (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.‎ ‎ ‎ ‎【008】如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD。‎ (1) 求证:BE=AD;‎ (2) 求证:AC是线段ED的垂直平分线;‎ (3) ‎△DBC是等腰三角形吗?并说明理由。‎ ‎【009】一次函数的图象分别与轴、轴交于点,与反比例函数的图象相交于点.过点分别作轴,轴,垂足分别为;过点分别作轴,轴,垂足分别为与交于点,连接.‎ ‎(1)若点在反比例函数的图象的同一分支上,如图1,试证明:‎ ‎①;‎ ‎②.‎ ‎(2)若点分别在反比例函数的图象的不同分支上,如图2,则与还相等吗?试证明你的结论.‎ O C F M D E N K y x ‎(第25题图1)‎ O C D K F E N y x M ‎(第25题图2)‎ ‎【010】如图,抛物线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是.‎ ‎(1)求抛物线对应的函数表达式;‎ ‎(2)经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;‎ ‎(3)设直线与y轴的交点是,在线段上任取一点(不与重合),经过三点的圆交直线于点,试判断的形状,并说明理由;‎ ‎(4)当是直线上任意一点时,(3)中的结论是否成立?(请直接写出结论).‎ O B x y A M C ‎1‎ ‎(第10题图)‎ ‎【011】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.‎ ‎(1)求证:EG=CG;‎ ‎(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. ‎ ‎(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)‎ D F B A C E 第24题图③‎ F B A D C E G 第24题图②‎ F B A D C E G 第24题图①‎ ‎ ‎ ‎【012】如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点.‎ ‎(1)求抛物线的解析式;‎ ‎(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.‎ ‎(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.‎ O x y N C D E F B M A ‎【013】如图,抛物线经过三点.‎ ‎(1)求出抛物线的解析式;‎ ‎(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;‎ ‎(3)在直线AC上方的抛物线上有一点D,使得的面积最大,求出点D的坐标.‎ O x y A B C ‎4‎ ‎1‎ ‎(第26题图)‎ ‎【014】在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图).‎ ‎(1)求边在旋转过程中所扫过的面积;‎ ‎(第26题)‎ O A B C M N ‎(2)旋转过程中,当和平行时,求正方形 ‎ 旋转的度数;‎ ‎(3)设的周长为,在旋转正方形 的过程中,值是否有变化?请证明你的结论.‎ ‎【015】如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6.‎ ‎⑴求二次函数的解析式;‎ ‎⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;‎ ‎⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.‎ ‎【016】如图9,已知正比例函数和反比例函数的图象都经过点.‎ ‎(1)求正比例函数和反比例函数的解析式;‎ ‎(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;‎ ‎(3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;‎ ‎(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:?若存在,求点E的坐标;‎ 若不存在,请说明理由.‎ y x O C D B A ‎3‎ ‎3‎ ‎6‎ ‎【017】如图,已知抛物线经过,两点,顶点为.‎ ‎(1)求抛物线的解析式;‎ ‎(2)将绕点顺时针旋转90°后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;‎ ‎(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.‎ y x B A O D ‎(第26题)‎ ‎【018】如图,抛物线经过、两点,与轴交于另一点.‎ ‎(1)求抛物线的解析式;‎ ‎(2)已知点在第一象限的抛物线上,求点关于直线对称的点的坐标;‎ ‎(3)在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.‎ y x O A B C ‎【019】如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CF—EO|,再以CM、CO为边作矩形CMNO ‎(1)试比较EO、EC的大小,并说明理由 ‎(2)令,请问m是否为定值?若是,请求出m的值;若不是,请说明理由 ‎(3)在(2)的条件下,若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式.‎ ‎ (4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标?若不存在,请说明理由。‎ ‎【020】如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF。‎ 解答下列问题:‎ ‎(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 ,数量关系为 。‎ ‎②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?‎ ‎(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动。‎ 试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由。(画图不写作法)‎ ‎(3)若AC=4,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值。‎
查看更多

相关文章

您可能关注的文档