中考压轴题训练2

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考压轴题训练2

‎ 为了冲刺中考数学140分,我拼了! ‎ ‎27.如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.‎ ‎(1)证明△COF是等腰三角形,并求出CF的长;‎ ‎(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相似?‎ ‎28.如图,已知抛物线的方程C1: (m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.‎ ‎(1)若抛物线C1过点M(2, 2),求实数m的值;‎ ‎(2)在(1)的条件下,求△BCE的面积;‎ ‎(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;‎ ‎(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.‎ ‎24.解:(1)m=4………………………………2分 ‎(2):B(-2,0)C(4,0)E(0,2)‎ ‎………… …………5分 ‎(3)如图2,抛物线的对称轴是直线x=1,当H落在线段EC上时,BH+EH最小.‎ 设对称轴与x轴的交点为P,那么.‎ 因此.解得.所以点H的坐标为.…………………8分 ‎(4)①如图3,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.‎ 由于∠BCE=∠FBC,所以当,即时,△BCE∽△FBC.‎ 设点F的坐标为,由,得.‎ 解得x=m+2.所以F′(m+2, 0).‎ 由,得.所以.‎ 由,得.‎ 整理,得0=16.此方程无解.………………10分 图2 图3 图4‎ ‎②如图4,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,‎ 由于∠EBC=∠CBF,所以,即时,△BCE∽△BFC.‎ 在Rt△BFF′中,由FF′=BF′,得.‎ 解得x=2m.所以F′.所以BF′=2m+2,.‎ 由,得.解得.‎ 综合①、②,符合题意的m为.…………………12分 ‎24.‎
查看更多

相关文章

您可能关注的文档