- 2021-05-10 发布 |
- 37.5 KB |
- 31页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2016中考数学尖子生练习题
第十五讲 二次函数的综合题及应用 【重点考点例析】 考点一:确定二次函数关系式 例1 (2015•牡丹江)如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,-3) (1)求此二次函数的解析式; (2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标. 考点二:二次函数与x轴的交点问题 例2 (2015•苏州)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( ) A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3 对应训练 2.(2013•株洲)二次函数y=2x2+mx+8的图象如图所示,则m的值是( ) A.-8 B.8 C.±8 D.6 31 考点三:二次函数的实际应用 例3 (2015•营口)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元. (1)求w与x之间的函数关系式. (2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元? 3.(2015•武汉)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表): 温度x/℃ … -4 -2 0 2 4 4.5 … 植物每天高度增长量y/mm … 41 49 49 41 25 19.75 … 由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种. (1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由; (2)温度为多少时,这种植物每天高度增长量最大? (3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果. 31 考点四:二次函数综合性题目 例4 (2015•自贡)如图,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA= . (1)求抛物线的解析式; (2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值; (3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由. 4.(2015•张家界)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC. (1)求直线CD的解析式; (2)求抛物线的解析式; (3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO; (4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 31 31 2.(2015•滨州)某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计). 3.(2015•日照)一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系: x 3O00 3200 3500 4000 y 100 96 90 80 (1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式. (2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表: 租出的车辆数 未租出的车辆数 租出每辆车的月收益 所有未租出的车辆每月的维护费 (3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元. 4.(2015•枣庄)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点. (1)求这个二次函数的表达式. 31 (2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由. (3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积. 5.(2015•潍坊)为了改善市民的生活环境,我市在某河滨空地处修建一个如图所示的休闲文化广场,在Rt△ABC内修建矩形水池DEFG,使定点D,E在斜边AB上,F,G分别在直角边 BC,AC上;又分别以AB,BC,AC为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设瓷砖,其中AB=24米,∠BAC=60°,设EF=x米,DE=y米. (1)求y与x之间的函数解析式; (2)当x为何值时,矩形DEFG的面积最大?最大面积是多少? (3)求两弯新月(图中阴影部分)的面积,并求当x为何值时,矩形DEFG的面积及等于两弯新月面积的 ? 31 6.(2015•烟台)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数y=ax2+bx+c的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(- 31 ,0),以0C为直径作半圆,圆心为D. (1)求二次函数的解析式; (2)求证:直线BE是⊙D的切线; (3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由. 31 7.(2015•泰安)如图,抛物线y=x2+bx+c与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0) (1)求该抛物线的解析式. (2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值. (3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标. 31 8.(2015•威海)如图,在平面直角坐标系中,直线y= x+ 与直线y=x交于点A,点B在直线y= x+ 上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E. (1)求点A,B的坐标; (2)求抛物线的函数表达式及顶点E的坐标; (3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由. 31 31 9.(2015•潍坊)如图,抛物线y=ax2+bx+c关于直线x=1对称,与坐标轴交与A,B,C三点,且AB=4,点D(2, )在抛物线上,直线l是一次函数y=kx-2(k≠0)的图象,点O是坐标原点. (1)求抛物线的解析式; (2)若直线l平分四边形OBDC的面积,求k的值; (3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l交于M,N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由. 31 8.(2015•乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表: 价格x(元/个) … 30 40 50 60 … 销售量y(万个) … 5 4 3 2 … 同时,销售过程中的其他开支(不含造价)总计40万元. (1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式. (2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少? (3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元? 31 9. (2015•达州)今年,6月12日为端午节.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小华和小明提出的问题. 11.(2015•湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,-5). (1)求此抛物线的解析式; 31 (2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明; (3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由. 31 12.(2013•曲靖)如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=-x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E. (1)求抛物线的解析式. (2)当DE=4时,求四边形CAEB的面积. (3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由. 31 13.(2013•钦州)如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA. (1)求点A的坐标和∠AOB的度数; 31 (2)若将抛物线y= x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由; (3)在(2)的情况下,判断点C′是否在抛物线y= x2+2x上,请说明理由; (4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由. 31 2015•扬州)如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC. (1)求证:AB=AC; (2)若AD=4,cos∠ABF=,求DE的长. 例2 (2015•自贡)如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=6cm. (1)求证:AC是⊙O的切线; (2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π) 31 2.(2015•玉林)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC. (1)求证:AC是⊙O的切线: (2)若BF=8,DF= ,求⊙O的半径r. 4.(2015•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是( ) A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE 4.D 31 5.(2015•济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( ) A.4 B.3 C.6 D.2 6.(2015•日照)如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为 )cm2 . 7.(2015•滨州)如图,在△ABC中,AB=AC,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,EF⊥AC,垂足为F.求证:直线EF是⊙O的切线. 31 8.(2015•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形. (1)求AD的长; (2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由. 11.(2015•烟台)如图,AB是⊙O的直径,BC是⊙O的切线,连接AC交⊙O于点D,E为上一点,连结AE,BE,BE交AC于点F,且AE2=EF•EB. (1)求证:CB=CF; (2)若点E到弦AD的距离为1,cos∠C=,求⊙O的半径. 31 12.(2015•潍坊)如图,四边形ABCD是平行四边形,以对角线BD为直径作⊙O,分别与BC,AD相交于点E,F. (1)求证:四边形BEDF为矩形; (2)BD2=BE•BC,试判断直线CD与⊙O的位置关系,并说明理由. 31 19.(2015•巴中)若⊙O1和⊙O2的圆心距为4,两圆半径分别为r1、r2,且r1、r2是方程组的解,求r1、r2的值,并判断两圆的位置关系. 20.(2015•凉山州)在同一平面直角坐标系中有5个点:A(1,1),B(-3,-1),C(-3,1),D(-2,-2),E(0,-3). (1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系; (2)若直线l经过点D(-2,-2),E(0,-3),判断直线l与⊙P的位置关系. 21.(2015•永州)如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为BC的中点. (1)求证:AB=BC; (2)求证:四边形BOCD是菱形. 31 22.(2015•株洲)已知AB是⊙O的直径,直线BC与⊙O相切于点B,∠ABC的平分线BD交⊙O于点D,AD的延长线交BC于点C. (1)求∠BAC的度数; (2)求证:AD=CD. 23.(2015•天津)已知直线I与⊙O,AB是⊙O的直径,AD⊥I于点D. (Ⅰ)如图①,当直线I与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小; (Ⅱ)如图②,当直线I与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小. 31 24.(2015•苏州)如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F. (1)求证:BD=BF; (2)若CF=1,cosB=,求⊙O的半径. 25.(2015•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC. (1)求证:PA为⊙O的切线; (2)若OB=5,OP=,求AC的长. 31 26.(2015•莆田)如图,▱ABCD中,AB=2,以点A为圆心,AB为半径的圆交边BC于点E,连接DE、AC、AE. (1)求证:△AED≌△DCA; (2)若DE平分∠ADC且与⊙A相切于点E,求图中阴影部分(扇形)的面积. 28.(2015•泸州)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD. (1)求证:CD2=CA•CB; (2)求证:CD是⊙O的切线; (3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长. 31 21.(2013•重庆)已知,如图,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2. (1)若CF=2,AE=3,求BE的长; (2)求证:∠CEG=∠AGE. 23.(2013•兰州)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E. (1)求证:四边形ABCE是平行四边形; (2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长. 34.(2015•扬州)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1, 31 BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y. (1)求y与x的函数关系式; (2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围; (3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长. (2015•青岛模拟)如图,在等腰梯形ABCD中,AB=DC=5cm,AD=4cm,BC=10cm,点E从点C出发,以1cm/s的速度沿CB向点B移动,点F从点B出发以2cm/s的速度沿BA方向向点A移动,当点F到达点A时,点E停止运动;设运动的时间为t(s) (0<t<2.5).问: (1)当t为何值时,EF平分等腰梯形ABCD的周长? (2)若△BFE的面积为S(cm2),求S与t的函数关系式; (3)是否存在某一时刻t,使五边形AFECD的面积与△BFE的面积之比是3:2?若存在求出t的值;若不存在,说明理由. (4)在点E、F运动的过程中,若线段EF=cm,此时EF能否垂直平分AB? 31 35.(2015•绥化)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF (1)如图1,当点D在线段BC上时.求证CF+CD=BC; (2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系; (3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变; ①请直接写出CF,BC,CD三条线段之间的关系; ②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度. 31 36.(2015•盘锦)如图,正方形ABCD的边长是3,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF. (1)如图,当点P在CB延长线上时,求证:四边形PCFE是平行四边形; (2)如图,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由; (3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由. 31查看更多