- 2021-05-10 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
重庆中考几何大题集合
重庆中考几何大题(2008年—2017年) (08年重庆中考)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E。 求证:(1)△BFC≌△DFC;(2)AD=DE (09年重庆中考)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且. (1)求证:; (2)若,求AB的长. (10年重庆中考) 已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA. (1)若∠MFC=120°,求证:AM=2MB; (2)求证:∠MPB=90°- ∠FCM. (11年重庆中考)如图,梯形ABCD中,AD∥BC,∠DCB=450,CD=2,BC⊥CD。过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连结EG、AF. (1)求EG的长; (2)求证:CF=AB+AF. (12年重庆中考)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2. (1)若CE=1,求BC的长; (2)求证:AM=DF+ME. (13年重庆中考A卷) 如图,在矩形ABCD中,E、F分别是AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC。 (1)求证:OE=OF (2)若BC=2,求AB的长。 (13年重庆中考B卷)已知,如图,在□ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2。 (1)若CF=2,AE=3,求BE的长; (2)求证:∠CEG=∠AGE。 (14年重庆中考A卷)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC. (1)求证:BE=CF; (2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME. 求证:①ME⊥BC;②DE=DN. (14年重庆中考B卷)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证: (1)AF=CG; (2)CF=2DE. (15年重庆中考A卷)如图1,在△ABC中,ACB=90°,BAC=60°,点E角平分线上一点,过点E作AE的垂线,过点A作AB的线段,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF。 (1)如图1,若点H是AC的中点,AC=,求AB,BD的长。 (2)如图1,求证:HF=EF。 (3)如图2,连接CF,CE,猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由。 图1 图2 (15年重庆中考B卷)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F. (1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长; (2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF扔与线段AC相交于点F.求证:; (3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线交与点F,作DN⊥AC于点N,若DN=FN,求证:. (16年重庆中考A卷)在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF. (1)若AB=2,求BC的长; (2)如图1,当点G在AC上时,求证:BD=CG; (3)如图2,当点G在AC的垂直平分线上时,直接写出的值. (16年重庆中考B卷)已知△ABC是等腰直角三角形,∠BAC=90°,CD=BC,DE⊥CE,DE=CE,连接AE,点M是AE的中点. (1)如图1,若点D在BC边上,连接CM,当AB=4时,求CM的长; (2)如图2,若点D在△ABC的内部,连接BD,点N是BD中点,连接MN,NE,求证:MN⊥AE; (3)如图3,将图2中的△CDE绕点C逆时针旋转,使∠BCD=30°,连接BD,点N是BD中点,连接MN,探索的值并直接写出结果. (17年重庆中考A卷)在中,垂足为,点C是BM延长线上一点,连接AC. (1)如图1,若求的长; (2)如图2,点D是线段AM上一点,MD=MC,点E是外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:. (17年重庆中考B卷)如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE. (1)如图1,若AB=42,BE=5,求AE的长; (2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC. 查看更多