- 2022-03-30 发布 |
- 37.5 KB |
- 23页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
上海市各区中考二模数学分类汇编压轴题专题含答案
上海市各区2018届九年级中考二模数学试卷精选汇编:压轴题专题宝山区、嘉定区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在圆中,、是圆的半径,点在劣弧上,,,∥,联结.(1)如图8,求证:平分;(2)点在弦的延长线上,联结,如果△是直角三角形,请你在如图9中画出点的位置并求的长;(3)如图10,点在弦上,与点不重合,联结与弦交于点,设点与点的距离为,△的面积为,求与的函数关系式,并写出自变量的取值范围.图8图9图10图825.(1)证明:∵、是圆的半径∴…………1分∴…………1分∵∥ ∴…………1分∴∴平分…………1分(2)解:由题意可知不是直角,所以△是直角三角形只有以下两种情况:和①当,点的位置如图9-1……………1分图9-1过点作,垂足为点∵经过圆心∴∵∴在Rt△中,∵∴∵∥∴∵∴∴四边形是矩形图9-2∴∴……………2分②当,点的位置如图9-2由①可知,在Rt△中,∴……………2分综上所述,的长为或.说明:只要画出一种情况点的位置就给1分,两个点都画正确也给1分.(3)过点作,垂足为点图10由(1)、(2)可知,由(2)可得: ∵∴……………1分∵∥∴……………1分又,,∴∴……………1分∴∴……………1分自变量的取值范围为……………1分长宁区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O中,C是弦AB上的一点,联结OC并延长,交劣弧AB于点D,联结AO、BO、AD、BD.已知圆O的半径长为5,弦AB的长为8.(1)如图1,当点D是弧AB的中点时,求CD的长;(2)如图2,设AC=x,,求y关于x的函数解析式并写出定义域;(3)若四边形AOBD是梯形,求AD的长.图1图2备用图第25题图tututu图 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)解:(1)∵OD过圆心,点D是弧AB的中点,AB=8,∴OD⊥AB,(2分)在Rt△AOC中,,AO=5,∴(1分),(1分)(2)过点O作OH⊥AB,垂足为点H,则由(1)可得AH=4,OH=3∵AC=x,∴在Rt△HOC中,,AO=5,∴,(1分)∴()(3分)(3)①当OB//AD时,过点A作AE⊥OB交BO延长线于点E,过点O作OF⊥AD,垂足为点F,则OF=AE,∴在Rt△AOF中,,AO=5,∴∵OF过圆心,OF⊥AD,∴.(3分)②当OA//BD时,过点B作BM⊥OA交AO延长线于点M,过点D作DG⊥AO,垂足为点G,则由①的方法可得,在Rt△GOD中,,DO=5,∴,, 在Rt△GAD中,,∴(3分)综上得崇明区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,已知中,,,,D是AC边上一点,且,联结BD,点E、F分别是BC、AC上两点(点E不与B、C重合),,AE与BD相交于点G.(1)求证:BD平分;(2)设,,求与之间的函数关系式;(3)联结FG,当是等腰三角形时,求BE的长度.(备用图)ABCD(第25题图)ABCDGEF25.(满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)(1)∵,又∵∴∴……………………………1分∵∴ 又∵是公共角∴…………………………1分∴,∴∴∴………………………1分∴∴平分………………………1分(2)过点作交的延长线于点∵∴∵,∴∴……1分∵∴∴∴…1分∵即∵∴又∵∴……………………………………………………………1分∴∴∴…………………………………………………………1分(3)当△是等腰三角形时,存在以下三种情况:1°易证,即,得到………2分2°易证,即,…………2分3°易证,即………2分 奉贤区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知:如图9,在半径为2的扇形AOB中,∠AOB=90°,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结BE、CD.(1)若C是半径OB中点,求∠OCD的正弦值;(2)若E是弧AB的中点,求证:;(3)联结CE,当△DCE是以CD为腰的等腰三角形时,求CD的长.图9ABCDOE备用图ABO备用图ABO 黄浦区25.(本题满分14分)如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB的中点.已知AD=1,AB=2.(1)设BC=x,CD=y,求y关于x的函数关系式,并写出定义域;(2)当∠B=70°时,求∠AEC的度数;(3)当△ACE为直角三角形时,求边BC的长. 25.解:(1)过A作AH⊥BC于H,————————————————————(1分)由∠D=∠BCD=90°,得四边形ADCH为矩形.在△BAH中,AB=2,∠BHA=90°,AH=y,HB=,所以,——————————————————————(1分)则.———————————————(2分)(2)取CD中点T,联结TE,————————————————————(1分)则TE是梯形中位线,得ET∥AD,ET⊥CD.∴∠AET=∠B=70°.———————————————————————(1分)又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.——————————————————(1分)由ET垂直平分CD,得∠CET=∠DET=35°,————————————(1分)所以∠AEC=70°+35°=105°.——————————————————(1分)(3)当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,得∠BCE=30°,则在△ABH中,∠B=60°,∠AHB=90°,AB=2,得BH=1,于是BC=2.——————————————————————(2分)当∠CAE=90°时,易知△CDA∽△BCA,又, 则(舍负)—————(2分)易知∠ACE<90°.所以边BC的长为2或.——————————————————(1分)金山区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图9,已知在梯形ABCD中,AD∥BC,AB=DC=AD=5,,P是线段BC上一点,以P为圆心,PA为半径的⊙P与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设BP=x.(1)求证△ABP∽△ECP;(2)如果点Q在线段AD上(与点A、D不重合),设△APQ的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△QED与△QAP相似,求BP的长.ABPCDQEABCD图9备用图 25.解:(1)在⊙P中,PA=PQ,∴∠PAQ=∠PQA,……………………………(1分)∵AD∥BC,∴∠PAQ=∠APB,∠PQA=∠QPC,∴∠APB=∠EPC,……(1分)∵梯形ABCD中,AD∥BC,AB=DC,∴∠B=∠C,…………………………(1分)∴△APB∽△ECP.…………………………………………………………(1分)(2)作AM⊥BC,PN⊥AD,∵AD∥BC,∴AM∥PN,∴四边形AMPN是平行四边形,∴AM=PN,AN=MP.………………………………………………………(1分)在Rt△AMB中,∠AMB=90°,AB=5,sinB=,∴AM=3,BM=4,∴PN=3,PM=AN=x-4,……………………………………(1分)∵PN⊥AQ,∴AN=NQ,∴AQ=2x-8,……………………………………(1分)∴,即,………………………(1分)定义域是.………………………………………………………(1分)(3)解法一:由△QED与△QAP相似,∠AQP=∠EQD,①如果∠PAQ=∠DEQ,∵△APB∽△ECP,∴∠PAB=∠DEQ,又∵∠PAQ=∠APB,∴∠PAB=∠APB,∴BP=BA=5.………………………(2分)②如果∠PAQ=∠EDQ,∵∠PAQ=∠APB,∠EDQ=∠C,∠B=∠C,∴∠B=∠APB,∴AB=AP,∵AM⊥BC,∴BM=MP=4,∴BP=8.………(2分)综上所述BP的长为5或者8.………………………………………………(1分)解法二:由△QAP与△QED相似,∠AQP=∠EQD,在Rt△APN中,,∵QD∥PC,∴,∵△APB∽△ECP,∴,∴,①如果,∴,即,解得………………………………………………………………………(2分) ②如果,∴,即,解得………………………………………………………………………(2分)综上所述BP的长为5或者8.…………………………………………………(1分)静安区25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)A第25题图BPOCDE·如图,平行四边形ABCD中,已知AB=6,BC=9,.对角线AC、BD交于点O.动点P在边AB上,⊙P经过点B,交线段PA于点E.设BP=x.(1)求AC的长;(2)设⊙O的半径为y,当⊙P与⊙O外切时,求y关于x的函数解析式,并写出定义域;第25题备用图ABOCD(3)如果AC是⊙O的直径,⊙O经过点E,求⊙O与⊙P的圆心距OP的长.25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)A·第25题图(1)BPOCHED解:(1)作AH⊥BC于H,且,AB=6,那么…………(2分)BC=9,HC=9-2=7,,……………………(1分)﹒………(1分)·A第25题图(2)BPOCDHEI(2)作OI⊥AB于I,联结PO,AC=BC=9,AO=4.5∴∠OAB=∠ABC, ∴Rt△AIO中,∴AI=1.5,IO=……………………(1分)∴PI=AB-BP-AI=6-x-1.5=,……………………(1分)∴Rt△PIO中,……(1分)∵⊙P与⊙O外切,∴……………………(1分)∴=…………………………(1分)∵动点P在边AB上,⊙P经过点B,交线段PA于点E.∴定义域:0查看更多