- 2021-05-10 发布 |
- 37.5 KB |
- 20页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018中考数学试题分类汇编考点24平行四边形含解析_459
2018中考数学试题分类汇编:考点24 平行四边形 一.选择题(共9小题) 1.(2018•宁波)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为( ) A.50° B.40° C.30° D.20° 【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案. 【解答】解:∵∠ABC=60°,∠BAC=80°, ∴∠BCA=180°﹣60°﹣80°=40°, ∵对角线AC与BD相交于点O,E是边CD的中点, ∴EO是△DBC的中位线, ∴EO∥BC, ∴∠1=∠ACB=40°. 故选:B. 2.(2018•宜宾)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定 【分析】想办法证明∠E=90°即可判断. 【解答】解:如图,∵四边形ABCD是平行四边形, ∴AB∥CD, ∴∠BAD+∠ADC=180°, ∵∠EAD=∠BAD,∠ADE=∠ADC, ∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°, ∴∠E=90°, ∴△ADE是直角三角形, 故选:B. 3.(2018•黔南州)如图在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为( ) A.26cm B.24cm C.20cm D.18cm 【分析】根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长. 【解答】解:∵AC=4cm,若△ADC的周长为13cm, ∴AD+DC=13﹣4=9(cm). 又∵四边形ABCD是平行四边形, ∴AB=CD,AD=BC, ∴平行四边形的周长为2(AB+BC)=18cm. 故选:D. 4.(2018•海南)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( ) A.15 B.18 C.21 D.24 【分析】利用平行四边形的性质,三角形中位线定理即可解决问题; 【解答】解:∵平行四边形ABCD的周长为36, ∴BC+CD=18, ∵OD=OB,DE=EC, ∴OE+DE=(BC+CD)=9, ∵BD=12, ∴OD=BD=6, ∴△DOE的周长为9+6=15, 故选:A. 5.(2018•泸州)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为( ) A.20 B.16 C.12 D.8 【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题; 【解答】解:∵四边形ABCD是平行四边形, ∴OA=OC, ∵AE=EB, ∴OE=BC, ∵AE+EO=4, ∴2AE+2EO=8, ∴AB+BC=8, ∴平行四边形ABCD的周长=2×8=16, 故选:B. 6.(2018•眉山)如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( ) A.1个 B.2个 C.3个 D.4个 【分析】如图延长EF交BC的延长线于G,取AB的中点H连接FH.想办法证明EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题; 【解答】解:如图延长EF交BC的延长线于G,取AB的中点H连接FH. ∵CD=2AD,DF=FC, ∴CF=CB, ∴∠CFB=∠CBF, ∵CD∥AB, ∴∠CFB=∠FBH, ∴∠CBF=∠FBH, ∴∠ABC=2∠ABF.故①正确, ∵DE∥CG, ∴∠D=∠FCG, ∵DF=FC,∠DFE=∠CFG, ∴△DFE≌△FCG, ∴FE=FG, ∵BE⊥AD, ∴∠AEB=90°, ∵AD∥BC, ∴∠AEB=∠EBG=90°, ∴BF=EF=FG,故②正确, ∵S△DFE=S△CFG, ∴S四边形DEBC=S△EBG=2S△BEF,故③正确, ∵AH=HB,DF=CF,AB=CD, ∴CF=BH,∵CF∥BH, ∴四边形BCFH是平行四边形, ∵CF=BC, ∴四边形BCFH是菱形, ∴∠BFC=∠BFH, ∵FE=FB,FH∥AD,BE⊥AD, ∴FH⊥BE, ∴∠BFH=∠EFH=∠DEF, ∴∠EFC=3∠DEF,故④正确, 故选:D. 7.(2018•东营)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是( ) A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF 【分析】正确选项是D.想办法证明CD=AB,CD∥AB即可解决问题; 【解答】解:正确选项是D. 理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE, ∴△CDE≌△BFE,CD∥AF, ∴CD=BF, ∵BF=AB, ∴CD=AB, ∴四边形ABCD是平行四边形. 故选:D. 8.(2018•玉林)在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④ AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有( ) A.3种 B.4种 C.5种 D.6种 【分析】根据平行四边形的判定方法中,①②、③④、①③、③④均可判定是平行四边形. 【解答】解:根据平行四边形的判定,符合条件的有4种,分别是:①②、③④、①③、③④. 故选:B. 9.(2018•安徽)▱ABCD中,E,F的对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是( ) A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF 【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解. 【解答】解:如图,连接AC与BD相交于O, 在▱ABCD中,OA=OC,OB=OD, 要使四边形AECF为平行四边形,只需证明得到OE=OF即可; A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意; B、若AE=CF,则无法判断OE=OE,故本选项符合题意; C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意; D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意; 故选:B. 二.填空题(共6小题) 10.(2018•十堰)如图,已知▱ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为 14 . 【分析】根据平行四边形的性质即可解决问题; 【解答】解:∵四边形ABCD是平行四边形, ∴AB=CD=5,OA=OC=4,OB=OD=5, ∴△OCD的周长=5+4+5=14, 故答案为14. 11.(2018•株洲)如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=3,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP= 6 . 【分析】根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=3,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=AM=6. 【解答】解:∵BD=CD,AB=CD, ∴BD=BA, 又∵AM⊥BD,DN⊥AB, ∴DN=AM=3, 又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP, ∴∠P=∠PAM, ∴△APM是等腰直角三角形, ∴AP=AM=6, 故答案为:6. 12.(2018•衡阳)如图,▱ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么▱ABCD的周长是 16 . 【分析】根据题意,OM垂直平分AC,所以MC=MA,因此△CDM的周长=AD+CD,可得平行四边形ABCD的周长. 【解答】解:∵ABCD是平行四边形, ∴OA=OC, ∵OM⊥AC, ∴AM=MC. ∴△CDM的周长=AD+CD=8, ∴平行四边形ABCD的周长是2×8=16. 故答案为16. 13.(2018•泰州)如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为 14 . 【分析】根据平行四边形的性质,三角形周长的定义即可解决问题; 【解答】解:∵四边形ABCD是平行四边形, ∴AD=BC=6,OA=OC,OB=OD, ∵AC+BD=16, ∴OB+OC=8, ∴△BOC的周长=BC+OB+OC=6+8=14, 故答案为14. 14.(2018•临沂)如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD= 4 . 【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的长,得出OA长,然后由勾股定理求得OB的长即可. 【解答】解:∵四边形ABCD是平行四边形, ∴BC=AD=6,OB=D,OA=OC, ∵AC⊥BC, ∴AC==8, ∴OC=4, ∴OB==2, ∴BD=2OB=4 故答案为:4. 15.(2018•无锡)如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是 2≤a+2b≤5 . 【分析】作辅助线,构建30度的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,∠EPH=30°,可得EH的长,计算a+2b=2OH,确认OH最大和最小值的位置,可得结论. 【解答】解:过P作PH⊥OY交于点H, ∵PD∥OY,PE∥OX, ∴四边形EODP是平行四边形,∠HEP=∠XOY=60°, ∴EP=OD=a, Rt△HEP中,∠EPH=30°, ∴EH=EP=a, ∴a+2b=2(a+b)=2(EH+EO)=2OH, 当P在AC边上时,H与C重合,此时OH的最小值=OC=OA=1,即a+2b的最小值是2; 当P在点B时,OH的最大值是:1+=,即(a+2b)的最大值是5, ∴2≤a+2b≤5. 三.解答题(共12小题) 16.(2018•福建)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF. 【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论. 【解答】证明:∵四边形ABCD是平行四边形, ∴OA=OC,AD∥BC, ∴∠OAE=∠OCF, 在△OAE和△OCF中, , ∴△AOE≌△COF(ASA), ∴OE=OF. 17.(2018•临安区)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF. 求证:(1)△ADF≌△CBE; (2)EB∥DF. 【分析】(1)要证△ADF≌△CBE,因为AE=CF,则两边同时加上EF,得到AF=CE,又因为ABCD是平行四边形,得出AD=CB,∠DAF=∠BCE,从而根据SAS推出两三角形全等; (2)由全等可得到∠DFA=∠BEC,所以得到DF∥EB. 【解答】证明:(1)∵AE=CF, ∴AE+EF=CF+FE,即AF=CE. 又ABCD是平行四边形, ∴AD=CB,AD∥BC. ∴∠DAF=∠BCE. 在△ADF与△CBE中 , ∴△ADF≌△CBE(SAS). (2)∵△ADF≌△CBE, ∴∠DFA=∠BEC. ∴DF∥EB. 18.(2018•宿迁)如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H.求证:AG=CH. 【分析】利用平行四边形的性质得出AF=EC,再利用全等三角形的判定与性质得出答案. 【解答】证明:∵四边形ABCD是平行四边形, ∴AD=BC,∠A=∠C,AD∥BC, ∴∠E=∠F, ∵BE=DF, ∴AF=EC, 在△AGF和△CHE中 , ∴△AGF≌△CHE(ASA), ∴AG=CH. 19.(2018•青岛)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD. (1)求证:AB=AF; (2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论. 【分析】(1)只要证明AB=CD,AF=CD即可解决问题; (2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可; 【解答】(1)证明:∵四边形ABCD是平行四边形, ∴AB∥CD,AB=CD, ∴∠AFC=∠DCG, ∵GA=GD,∠AGF=∠CGD, ∴△AGF≌△DGC, ∴AF=CD, ∴AB=AF. (2)解:结论:四边形ACDF是矩形. 理由:∵AF=CD,AF∥CD, ∴四边形ACDF是平行四边形, ∵四边形ABCD是平行四边形, ∴∠BAD=∠BCD=120°, ∴∠FAG=60°, ∵AB=AG=AF, ∴△AFG是等边三角形, ∴AG=GF, ∵△AGF≌△DGC, ∴FG=CG,∵AG=GD, ∴AD=CF, ∴四边形ACDF是矩形. 20.(2018•无锡)如图,平行四边形ABCD中,E、F分别是边BC、AD的中点,求证:∠ABF=∠CDE. 【分析】根据平行四边形的性质以及全等三角形的性质即可求出答案. 【解答】解:在▱ABCD中, AD=BC,∠A=∠C, ∵E、F分别是边BC、AD的中点, ∴AF=CE, 在△ABF与△CDE中, ∴△ABF≌△CDE(SAS) ∴∠ABF=∠CDE 21.(2018•淮安)已知:如图,▱ABCD的对角线AC、BD相交于点O,过点O的直线分别与AD、BC相交于点E、F.求证:AE=CF. 【分析】利用平行四边形的性质得出AO=CO,AD∥BC,进而得出∠EAC=∠FCO,再利用ASA求出△AOE≌△COF,即可得出答案. 【解答】证明:∵▱ABCD的对角线AC,BD交于点O, ∴AO=CO,AD∥BC, ∴∠EAC=∠FCO, 在△AOE和△COF中 , ∴△AOE≌△COF(ASA), ∴AE=CF. 22.(2018•南通模拟)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F. (1)求证:CF=AB; (2)连接BD、BF,当∠BCD=90°时,求证:BD=BF. 【分析】(1)欲证明AB=CF,只要证明△AEB≌△FEC即可; (2)想办法证明AC=BD,BF=AC即可解决问题; 【解答】证明:(1)∵四边形ABCD是平行四边形, ∴AB∥DF, ∴∠BAE=∠CFE ∵AE=EF,∠AEB=∠CEF, ∴△AEB≌△FEC, ∴AB=CF. (2)连接AC. ∵四边形ABCD是平行四边形,∠BCD=90°, ∴四边形ABCD是矩形, ∴BD=AC, ∵AB=CF,AB∥CF, ∴四边形ACFB是平行四边形, ∴BF=AC, ∴BD=BF. 23.(2018•徐州)已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断: ①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC. 请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题: ①构造一个真命题,画图并给出证明; ②构造一个假命题,举反例加以说明. 【分析】如果①②结合,那么这些线段所在的两个三角形是SSA,不一定全等,那么就不能得到相等的对边平行;如果②③结合,和①②结合的情况相同;如果①④结合,由对边平行可得到两对内错角相等,那么AD,BC所在的三角形全等,也得到平行的对边也相等,那么是平行四边形;最易举出反例的是②④,它有可能是等腰梯形. 【解答】解:(1)①④为论断时: ∵AD∥BC, ∴∠DAC=∠BCA,∠ADB=∠DBC. 又∵OA=OC, ∴△AOD≌△COB. ∴AD=BC. ∴四边形ABCD为平行四边形. (2)②④为论断时,此时一组对边平行,另一组对边相等,可以构成等腰梯形. 24.(2018•大庆)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F. (1)证明:四边形CDEF是平行四边形; (2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度. 【分析】(1)由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形; (2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=25﹣AB,然后根据勾股定理即可求得; 【解答】(1)证明:∵D、E分别是AB、AC的中点,F是BC延长线上的一点, ∴ED是Rt△ABC的中位线, ∴ED∥FC.BC=2DE, 又 EF∥DC, ∴四边形CDEF是平行四边形; (2)解:∵四边形CDEF是平行四边形; ∴DC=EF, ∵DC是Rt△ABC斜边AB上的中线, ∴AB=2DC, ∴四边形DCFE的周长=AB+BC, ∵四边形DCFE的周长为25cm,AC的长5cm, ∴BC=25﹣AB, ∵在Rt△ABC中,∠ACB=90°, ∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52, 解得,AB=13cm, 25.(2018•孝感)如图,B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形. 【分析】由AB∥DE、AC∥DF利用平行线的性质可得出∠B=∠DEF、∠ACB=∠F,由BE=CF可得出BC=EF,进而可证出△ABC≌△DEF(ASA),根据全等三角形的性质可得出AB=DE,再结合AB∥DE,即可证出四边形ABED是平行四边形. 【解答】证明:∵AB∥DE,AC∥DF, ∴∠B=∠DEF,∠ACB=∠F. ∵BE=CF, ∴BE+CE=CF+CE, ∴BC=EF. 在△ABC和△DEF中,, ∴△ABC≌△DEF(ASA), ∴AB=DE. 又∵AB∥DE, ∴四边形ABED是平行四边形. 26.(2018•岳阳)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形. 【分析】首先根据四边形ABCD是平行四边形,判断出AB∥CD,且AB=CD,然后根据AE=CF,判断出BE=DF,即可推得四边形BFDE是平行四边形. 【解答】证明:∵四边形ABCD是平行四边形, ∴AB∥CD,且AB=CD, 又∵AE=CF, ∴BE=DF, ∴BE∥DF且BE=DF, ∴四边形BFDE是平行四边形. 27.(2018•永州)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F. (1)求证:四边形BCFD为平行四边形; (2)若AB=6,求平行四边形BCFD的面积. 【分析】(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形. (2)在Rt△ABC中,求出BC,AC即可解决问题; 【解答】(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°, ∴∠ABC=60°. 在等边△ABD中,∠BAD=60°, ∴∠BAD=∠ABC=60°. ∵E为AB的中点, ∴AE=BE. 又∵∠AEF=∠BEC, ∴△AEF≌△BEC. 在△ABC中,∠ACB=90°,E为AB的中点, ∴CE=AB,BE=AB. ∴CE=AE, ∴∠EAC=∠ECA=30°, ∴∠BCE=∠EBC=60°. 又∵△AEF≌△BEC, ∴∠AFE=∠BCE=60°. 又∵∠D=60°, ∴∠AFE=∠D=60°. ∴FC∥BD. 又∵∠BAD=∠ABC=60°, ∴AD∥BC,即FD∥BC. ∴四边形BCFD是平行四边形. (2)解:在Rt△ABC中,∵∠BAC=30°,AB=6, ∴BC=AB=3,AC=BC=3, ∴S平行四边形BCFD=3×=9. 查看更多