- 2022-02-12 发布 |
- 37.5 KB |
- 15页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
小升初数学专项试题-植树和年龄问题应用题闯关-通用版
小学数学小升初植树和年龄问题应用题闯关 1.甲、乙、丙三人去完成植树任务,已知甲植一棵树的时间,乙可以植两棵树,丙可以植三棵树.他们先一起工作了5天,完成全部任务的13,然后丙休息了8天,乙休息了3天,甲没休息,最后一起完成任务.问:从开始植树算起,共用了多少天才完成任务? 2.原计划沿公路一旁埋电线杆301根,每相邻两根的间距是50米.后来实际只埋了201根,求实际每相邻两根的间距。 3.一个老人以等速在公路上散步,从第一根电线杆走到第12根用了12分,这个老人如果走24分,应走到第几根? 4.有一段木料,如果把它锯成每段0.8米长的短木料,需要锯9次.现在要把它锯成每段0.4米长的短木料,需要锯几次? 5.老张问了小李的年龄后,老张说:“当你到我现在的年龄时,咱们的年龄之和是72岁,在我是你现在的年龄时,你的年龄刚好是我现在的五分之一。”问:两人现在各多少岁? 6.全家四口人,父亲比母亲大3岁,姐姐比弟弟大2岁。四年前,他们全家年龄之和是58岁,现在是73岁。问:现在各人的年龄分别是多少? 7.今年小玲和妈妈岁数之和正好是60岁,小玲的岁数是妈妈的,小玲和妈妈今年各有多少岁? 8.有甲、乙、丙三人,甲的年龄除以乙的年龄等于2,丙的年龄除以甲的年龄等于4,丙比乙大56岁,问三人的年龄和为多少? 9.熊猫妈妈的小宝宝--小熊猫今年2岁了,过若干年以后,当小熊猫和熊猫妈妈当年年龄一样大时,熊猫妈妈已经18岁了。熊猫妈妈今年是多少岁? 10.王欢、爸爸、妈妈今年三人的平均年龄正好是30岁,已知爸爸妈妈两人的平均年龄是39岁,王欢今年是多少岁? 11.如果四个人的平均年龄是30岁,且在四个人中没有小于21岁的,那么年龄最大的这个是多少岁? 12.学生问老师几岁,老师说:“当我像你这么大时,你刚3岁,当你像我这么大时,我已经39岁。”这位老师几岁? 13.明明今年12岁,强强今年7岁,当两人的年龄和是45岁时,明明是多少岁? 14.小朋友想一想,“小机灵”今年几岁了? 15.小红和爷爷今年年龄的和是70岁,5年后小红比爷爷小50岁,小红和爷爷今年各多少岁? 16.24个同学在操场上围城一个圆圈做游戏,每相邻两名同学之间都是2米,这个圆圈的周长是多少米? 17.一座大桥全长是240米,从桥的一头到另一头每隔30米安装一盏灯,两边都安装,一共安装了多少盏路灯? 18.有一个正方形操场,每边都栽6棵树,四个角各栽1棵,一共栽了多少棵树? 19.一个正五边形的游泳池的周围要安装护栏,每边安15根,每个角上都要安装,一共需要多少根? 20.二人比赛爬楼梯,小华跑到4层是时,小红恰好跑到3层,照这样计算,小华跑到16层时,小红跑到几层? 21.两辆车每20分同时发一次车,从早上6点到晚上5点同时发车几次? 22.大摆钟自动报:当时间是8点整时,他就会敲8下.已知该摆钟7点整时敲7下花了12秒钟。在一次报时间时,大摆钟一共花了20秒敲完,你能算出这是几点吗? 23.小科坐在靠近列车窗口位置,火车从大桥的南端驶向北端,共需时80秒;小科便根据自己的电子表计时,由第一根电线杆到第11根电线杆用了25秒,如果路旁每两根相邻电线杆的间隔为50米,请问大桥的长度是多少米? 24.在一个长方形人工湖的中间修了两条分别为40米、60米的坝,(如图)如果再在湖的四周和堤坝上隔2米种一棵树,最多可以种树多少棵? 25.一座楼房,每上一层要走24级楼梯,小华要到五楼去,共要走多少级楼梯? 26.河滩的一边栽了45棵柳树,每两棵柳树之间栽2棵桃树,栽了多少棵桃树? 27.学校北墙前要栽月季花,全长300米,每隔5米种一株,两头不能种花。共能栽多少株月季花? 28.老陈和老孙两家都有两个小于9岁的男孩,四个孩子的年龄各不相同。一位邻居向我介绍: (1)小明比哥哥小3岁; (2)海涛是4个孩子中最大的; (3)小峰年龄恰好是老陈家其中一个孩子的一半; (4)奇志比老孙家第二个孩子大5岁; (5)他们两家五年前都只有一个孩子。 我听了还是弄不清谁是哪一家的孩子,每个孩子年龄究竟几岁。你能帮我弄清楚吗? 29.有一对父子,他们年龄相差20岁零六个月.父亲的岁数又是儿子岁数的3倍。请问:再过多少年,父亲的岁数是儿子的2倍? 30.从前有兄弟俩,都以为只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是多少? 31.古希腊数学家丢番图是以研究不定方程著称于世的数学家,在他的墓碑上刻着一段墓志铭:上帝赐予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到宁馨儿,享年仅及其父之半,便进入冰冷的墓,又过四年,他也走完了人生的旅途.计算丢番图在世的年龄. 32.有一位学者,在几年前去世了.己知他出生的年数正好是它的年龄的31倍.又知道这位学者于1965年获博士学位.这位学者是哪一年去世的?去世时是多少岁? 参考答案 1.20天 【解析】根据甲植一棵树的时间乙可以植两棵,丙可以植3棵,也就是说乙每天植树棵数是甲的2倍,丙每天植树棵数是甲的3倍,再根据甲乙丙5天完成全部的,得出甲乙丙一天完成全部的÷5,那么甲、乙、丙每天植树是总数的几分之几即可求出,再根据丙休息了8天,乙休息了3天,甲没休息,最后一起完成任务,即可得出答案。 解:甲乙丙一天完成全部的÷5=, 甲每天植数是总数的:÷(1+2+3)= 乙每天植树是总数的:×2= 丙每天植树是总数的:×3= 在丙休息8天,乙休息3天这段时间内,甲做了8天,乙做8-3=5(天),一共做了总数的×8+×5= 最后3人一起做共用了(1--)÷=7(天) 从开始植树起共用了5+8+7=20(天) 答:从开始植树算起,共用了20天。 考点:植树问题。 2.75米 【解析】根据题意,埋电线杆301根,有301-1=300个间隔,乘上每相邻两根的间离是50米,可以求出这条路的距离;实际只埋了201根,有201-1=200个间隔,用路长除以实际的间隔数,就是实际的间隔距离。 解:路长:(301-1)×50=15000(米); 实际间隔距离:15000÷(201-1)=75(米). 答:实际每相邻两根的间距是75米。 3.23根 【解析】从第一根电线杆走到第12根,一共走过了12-1=11个间隔,由此可以求得走过1个间隔所用的时间为:12÷11=(分钟),可得老人走过24分钟所走过的间隔数为24÷=24×=22(个),由此即可解决问题。 解:12÷(12-1) =12÷11 =(个) 24÷+1 =24×+1 =22+1 =23(根) 答:老人走到了第23根电线杆。 点评:本题的模型是植树问题中的两端都要栽的情况:电线杆数=间隔数+1。 4.19次 【解析】锯9次,是把这段木料锯成9+1=10段,由此可以求出木料的总长度是0.8×10=8(米),则要把它锯成每段0.4米长的短木料,可以锯成8÷0.4=20(段),根据:锯的次数=锯出的段数-1即可解答。 解:(9+1)×0.8÷0.4-1 =10×0.8÷0.4-1 =20-1 =19(次) 答:需要锯19次。 点评:锯木头时:锯出的段数=锯的次数+1,一定要灵活应用。 5. 【解析】根据老张说的话,把老张现在的年龄看作单位“1”,那么老张现在的年龄相当于5份,则年龄差相当于(5-1)÷2=2(份);所以当“当你到我现在的年龄时,咱们的年龄之和是72岁”时,老张的年龄是现在年龄的,小李的年龄=老张现在的年龄,所以老张:72÷(1+)=30(岁),小李:30×(1-)=18(岁)。 解:老张:72÷(1+) =72÷(1+) =30(岁) 小李:30×(1-)=18(岁) 答:老张现在30岁,小李现在18岁。 考点:年龄问题。 点评:关键是要认识到两人的年龄差始终不变,再找准两人的年龄差是多少份。 6.父亲现在的年龄是34岁,母亲现在的年龄是31岁,姐姐现在的年龄是5岁,弟弟现在的年龄是3岁。 【解析】根据年龄问题可知,现在全家年龄之和比四年前应该多16岁,但73-58=15,说明四年前弟弟没出生。 解:现在全家年龄之和比四年前应该多16岁,但73-58=15,说明四年前弟弟没出生,所以假设弟弟今年3岁,姐姐就是3+2=5(岁)。 设母亲的年龄为x岁,则父亲年龄为(x+3)岁。由题意得: x+(x+3)+5+3=73 2x+11=73 2x=62 x=31 所以父亲今年年龄是31+3=34(岁) 答:父亲现在的年龄是34岁,母亲现在的年龄是31岁,姐姐现在的年龄是5岁,弟弟现在的年龄是3岁。 7.小玲12岁,妈妈48岁 【解析】根据题干分析可得,把小玲和妈妈的年龄之和平均分成5份,则小玲的年龄是其中的1份,则妈妈的年龄就是4份,由此求出1份是多少,即可得出小玲的年龄。 解:小玲的年龄是:60÷5=12(岁) 则妈妈的年龄是:60-12=48(岁) 答:小玲12岁,妈妈48岁。 8.88岁 【解析】根据题意,甲的年龄除以乙的年龄等于2,可得甲的年龄是乙的2倍;丙的年龄除以甲的年龄等于4,可得丙的年龄是甲的4倍,由此可得丙的年龄是乙的2×4=8倍;又丙比乙大56岁,根据差倍公式可以求出乙和丙的年龄,然后再进一步解答。 解:根据题意可得: 丙的年龄是乙的:2×4=8; 由差倍公式可得: 乙的年龄是:56÷(8-1)=8(岁); 丙的年龄是:8×8=64(岁); 甲的年龄是:8×2=16(岁); 三人的年龄和是:16+8+64=88(岁); 答:三人的年龄和为88岁。 9.10岁 【解析】解答年龄问题的关键是抓住:不管多少年后,他们的年龄差不变。 (18+2)÷2=10(岁),熊猫妈妈今年为10岁。 解:(18+2)÷2 =20÷2 =10(岁) 答熊猫妈妈今年是10岁。 考点:年龄问题。 10.12岁 【解析】根据“爸爸和妈妈两人的平均年龄是39岁”,知道爸爸和妈妈两人的年龄和是(39×2),再根据“王欢、爸爸、妈妈三人的平均年龄正好是30岁,”知道王欢、爸爸、妈妈三人的年龄和是(30×3),用三人年龄之和减去爸爸妈妈的年龄和即可求出王欢的年龄。 解:30×3-39×2 =90-78 =12(岁) 答:王欢今年12岁。 11.57岁 【解析】根据题意,个人的平均年龄是30岁,这四个人一共30×4=120(岁);四个人中没有小于21岁的,也就是都大于或等于21岁;要使一个人的年龄最大,那么其他三个人的年龄应最小,是21岁。 解:根据题意可得: 四个人的年龄和是:30×4=120(岁); 要使一个人的年龄最大,那么其他三个人的年龄应最小,是21岁,最小的三人的年龄和是:21×3=63(岁); 最大的年龄是:120-63=57(岁) 答:年龄最大的这个是57岁。 12.27岁 【解析】假设年龄差为x,学生现在x+3,老师现在2x+3;根据“当你像我这么大时,我已经39岁”可列关系式:老师现在的年龄+年龄差=39;据此列方程解答求出年龄差,然后再求出老师现在的年龄。 解:设年龄差为x,学生现在x+3,老师现在2x+3。 2x+3+x=39 3x=36 x=12 老师现在:2x+3=2×12+3=27 答:这位老师27岁。 13.25岁 【解析】明明和强强的年龄差为12-7=5(岁),这是一个不变的量,当两人年龄和是45岁时,明明比强强还是大5岁,如果从两人的年龄和45岁里减去两人的年龄差5岁,得到的就是两个强强的年龄是45-5=40(岁),所以强强的年龄是40÷2=20(岁),明明的年龄就是45-20=25(岁)。 解:45-(12-7)=40(岁) 40÷2=20(岁) 45-20=25(岁) 答:明明是25岁。 14.12岁 【解析】根据题意,“小机灵”三年后年龄的2倍减去我三年前年龄的2倍的差是3×2+3×2=12岁,也就是现在的年龄,然后再进一步解答。 解:3×2+3×2 =6+6 =12(岁). 答:“小机灵”今年12岁了。 点评:关键是理解好三年后年龄的2倍与三年前年龄的2倍相差多少岁,也就是今年的岁数。 15. 【解析】根据“5年后小红比爷爷小50岁”知道今年爷爷比小红大50岁,由此根据和差公式即可求出今年小红和爷爷的年龄。 解:爷爷:(70+50)÷2 =120÷2 =60(岁) 小红:(70-50)÷2 =20÷2 =10(岁) 答:小红今年是10岁,爷爷今年是60岁。 点评:1、年龄差不会随时间的改变而变化;2、和差问题的公式:{(和+差)÷2=大数,(和-差)÷2=小数}。 16.48米 【解析】 由于圆圈是一个封闭图形,人数=间隔数;然后根据“圆圈的总长度=间隔数×间距”即可求出这个圆圈的周长,列式为2×24=48(米)。 解:2×24=48(米) 答:这个圆圈的周长是48米。 考点:植树问题。 点评:1、在封闭图形上的植树问题,知识点是:栽树的棵数=间隔数; 2、沿直线上栽:栽树的棵数=间隔数-1(两端都不栽),植树的棵数=间隔数+1(两端都栽),植树的棵数=间隔数(只栽一端)。 17.18盏 【解析】根据题意,全长240米除以间隔距离30米,求出间隔数,因为两端都安装,间隔数加上1,可以求出一边的,再乘上2即可。 解:(240÷30+1)×2 =(8+1)×2 =18(盏) 答:一共安装了18盏路灯。 18.20棵 【解析】每边都要种6棵树,那么6×4=24(棵),其中四个角的树重复加了一次,所以要减去,即可得出植树的总棵数。 解:6×4-4 =24-4 =20(棵) 答:这个操场的四周一共要种20棵树。 点评:植树问题中的方阵问题(四个角都有):植树的棵数=边上的数量×边数-4。 19.70根 【解析】每个边上安装15根,一共是5个边,所以是15×5根,但是五个顶点的被计算了2次,所以再减去5就是一共要安装的根数。 解:15×5-5 =75-5 =70(根) 答:一共要安装70根。 20.11层 【解析】从生活实际来分析,小华跑到4层时,他实际跑的路程是3层的路程;而小红跑到3层时,她也只是跑了2层楼的路程。这样可以发现小华跑了3层楼的路程,小红只跑了2层楼的路程;小华跑到16层时,他跑了15层楼的路程。按照比例算出:小华跑了15层楼的路程时,小红跑的路程是2×(15÷3)=10(层)跑了10层楼的路程时,正好到了11层。 解:(3-1)×[(16-1)÷(4-1)]+1 =2×(15÷3)+1 =2×5+1 =10+1 =11(层) 答:小红跑到了11层。 考点:植树问题。 点评:知识点:楼梯间隔数=层数-1。 21. 【解析】 由“从早晨6时发车到晚上5时”,知道一共是5+12-6=11小时,再把11小时化为分钟,用除法列式即可求出间隔时间内发车的辆数,再加上6时整时发的那两辆车就是一天共发车的辆数。 解:晚上5时用24时计时法是:12+5=17(时) 所以一天的发车时间总共是:17-6=11(小时) 151小时=660分钟 660÷20×2+2 =66+2 =68(辆) 答:这一天共发车68辆。 考点:植树问题。 22.11点 【解析】已知该摆钟7点整时敲7下花了12秒钟,实际是隔了7-1=6个间隔,那么每一个间隔用时为:12÷6=2秒,在一次报时间时,大摆钟一共花了20秒敲完,间隔数就是20÷2=10,由此即可求得打点的时间。 解:7-1=6 12÷6=2(秒) 20÷2+1=11(点) 答:在一次报时间时,大摆钟一共花了20秒敲完,这是11点。 点评:打点报时的间隔数=点数-1。 23.1600米 【解析】第一根电线杆到第11根电线杆,一共有10个间隔,用了25秒,由此求出每个间隔用的时间;由于总时间是80秒,用总时间除以每个间隔用的时间,就是全长一共有几个间隔,再乘上50米即可。 解:25÷(11-1) =25÷10 =2.5(秒) 80÷2.5×50 =32×50 =1600(米) 答:大桥的长度是1600米。 24.147棵 【解析】先求出四周要植树多少棵,考虑最多情况:四个角都植树,那么植树的棵树=间隔数,使四周植树棵树最多为:(40+60)×2÷2=100(棵)。 再求出中间两条坝上植树的棵数:因为坝的两端处在四周的中点上,所以不再植树,那么植树的棵数=间隔数-1,由此可以求得植树:60÷2-1+40÷2-1=48(棵),中间1棵重复加了,所以两条坝上的植树棵数为:48-1=47(棵)。 解:四周植树棵树为: (40+40)×2÷2 =100×2÷2 =100(棵) 两条坝上的植树棵树为: 60÷2-1+40÷2-1-1 =30-1+20-1-1 =47(棵) 100+47=147(棵) 答:最多可以种147棵树。 考点:植树问题。 25.96级 【解析】小华要到五楼去,共要走5-1=4层楼梯,求要走多少级楼梯。就是求4个24是多少。 解:24×(5-1) =24×4 =96(级) 答:共要走96级楼梯。 26.88棵 【解析】共有间隔数为:45-1=44个,由于每两棵柳树之间栽2棵桃树,求栽了多少棵桃树,就相当于求44个2,用乘法计算,列式是:2×44=88(棵)。 解:2×(45-1) =2×44 =88(棵) 答:栽了88棵桃树。 27.59株 【解析】先用总长度除以间距求出间隔数,由于两头不能种花,所以栽花的株数等于间隔数减1。 解:300÷5-1 =60-1 =59(株) 答:共能栽59株月季花。 28.老陈家:奇志7岁,小明4岁;老孙家:海涛8岁,小峰2岁。 【解析】根据题意,老陈和老孙两家都有两个小于9岁的男孩,也就是最大8岁,由(2)可得海涛8岁;根据5个条件可看出海涛和奇志分别是两家的哥哥,小明和小峰分别是两家的弟弟;然后再进一步推算即可。 解:小于9岁即最大8岁,且由5个条件可看出海涛和奇志分别是两家的哥哥,小明和小峰分别是两家的弟弟;由第2个条件可得海涛8岁;由第5个条件和原题中两家都有两个小于9岁的男孩,说明两家都各有一个小于4岁的男孩,也就是1~3岁; 若刚出生的小孩算1岁的话,由第4个条件可知奇志年龄在6-8岁之间,老孙家有一个1-3岁的孩子。 由1、4条件,如果小明是老孙家的孩子,那他哥哥不会是奇志而是海涛,则小明5岁,那么与前述结论不符(没有1-4岁的),故小明一定是老陈家的孩子,而海涛不可能是他哥哥。所以奇志是老陈家的孩子,即小明的哥哥;从而可断定海涛和小峰是老孙家的孩子。 综上结论可知: 老陈家:奇志在6-7岁,小明在3-4岁; 老孙家:海涛8岁,小峰在1-2岁; 由条件3(注意其中“恰好”一词),如果小峰1岁,那么老陈家该有个2岁的孩子,而实际上没有,那么小峰定是2岁,那么老陈家只有小明在条件范围内,故小明4岁,继而推出奇志7岁。 最后结论: 老陈家:奇志7岁,小明4岁; 老孙家:海涛8岁,小峰2岁。 考点:年龄问题。 29.10年零3个月 【解析】由题意,父子年龄相差20岁零六个月,父亲的岁数又是儿子岁数的3倍,即相差的20岁零六个月是儿子岁数的(3-1)倍,由此可求得儿子的年龄;由于父子的年龄差不会随时间而改变,所以当父亲的岁数是儿子的2倍时,他们年龄相差1倍还是20岁零六个月,即当时儿子的年龄就是20岁零六个月,用儿子后来的年龄减去原来的年龄就是再过的年数。 解:儿子的年龄:20岁零六个月÷(3-1)=10岁零3个月, 后来儿子的年龄:20岁零六个月÷(2-1)=20岁零六个月, 20岁零六个月-10岁零3个月=10年零3个月, 答:再过10年零3个月,父亲的岁数是儿子的2倍. 30.6岁,9岁 【解析】根据题意,弟弟看来,过3年我和你一样大,哥哥保持不变,哥哥比弟弟大3岁;哥哥看来,再过3年,自己就比弟弟大3+3岁,而弟弟保持不变,由差倍公式可以求出弟弟的,然后再进一步解答即可. 解:弟弟:(3+3)÷(2-1)=6(岁) 哥哥:6+3=9(岁) 答:他们俩分别是6岁,9岁。 31.84岁 【解析】题意是:丢番图的一生,幼年占,青少年占,又过了才结婚,5年后生子,子先父4年而卒,寿为其父的,由次列方程:x+x+x+5+x+4=x解答即可. 解:设丢番图在世的年龄为x岁.根据题意列方程: x+x+x+5+x+4=x x+9=x x=9 x=84 答:丢番图在世的年龄是84岁。 考点:年龄问题。 32.1984,62岁 【解析】1965÷31=63…12,所以在小于1965年的整数中,1953、1922、1891、…都是31的倍数。假如这位学者生于1953年,那么获得博士学位时才1965-1953=12(岁),这是不可能的。 又假如这位学者出生于1891年或更早些,那么他的年龄是1891÷31=61(岁),又假如这位学者出生于1891年或更早些,然后再讨论即可。 解:1965÷31=63……12,在小于31×63=1965年的整数中,1953、1922、1891…都是31的倍数。 假如这位学者生与1953年,那么获得博士学位时才1965-1953=12(岁),这是不可能的。 又假如这位学者出生于1891年或更早些,那么他的年龄是1891÷31=61(岁), 1891+61=1952年, 再看看他获得博士学位时的年龄是1965-1891=74(岁),这也是不可能的,因为到1965年时他早已去世了。 由此可推出他生于1922年,去世时是1922÷31=62(岁)。 他去世的年数是1922+62=1984年。 答:这位学者是1984年去世的,去世时是62岁。查看更多