- 2021-11-11 发布 |
- 37.5 KB |
- 25页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019年浙江省湖州市中考数学试卷含答案
2019年浙江省湖州市中考数学试卷 一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分。 1.(3分)数2的倒数是( ) A.﹣2 B.2 C.-12 D.12 2.(3分)据统计,龙之梦动物世界在2019年“五一”小长假期间共接待游客约238000人次.用科学记数法可将238000表示为( ) A.238×103 B.23.8×104 C.2.38×105 D.0.238×106 3.(3分)计算a-1a+1a,正确的结果是( ) A.1 B.12 C.a D.1a 4.(3分)已知∠α=60°32′,则∠α的余角是( ) A.29°28′ B.29°68′ C.119°28′ D.119°68′ 5.(3分)已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是( ) A.60πcm2 B.65πcm2 C.120πcm2 D.130πcm2 6.(3分)已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( ) A.110 B.910 C.15 D.45 7.(3分)如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是( ) A.60° B.70° C.72° D.144° 8.(3分)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是( ) A.24 B.30 C.36 D.42 9.(3分)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是( ) A.22 B.5 C.352 D.10 10.(3分)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是( ) A. B. C. D. 二、填空题(本题有6小题,每小题4分,共24分) 11.(4分)分解因式:x2﹣9= . 12.(4分)已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是 . 13.(4分)学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是 分. 14.(4分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB和CD分别是两根不同长度的支撑杆,夹角∠BOD=α.若AO=85cm,BO=DO=65cm.问:当α=74°时,较长支撑杆的端点A离地面的高度h约为 cm.(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.) 15.(4分)如图,已知在平面直角坐标系xOy中,直线y=12x﹣1分别交x轴,y轴于点A和点B,分别交反比例函数y1=kx(k>0,x>0),y2=2kx(x<0)的图象于点C和点D,过点C作CE⊥x轴于点E,连结OC,OD.若△COE的面积与△DOB的面积相等,则k的值是 . 16.(4分)七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为42的正方形ABCD可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图2所示的“拼搏兔”造型(其中点Q、R分别与图2中的点E、G重合,点P在边EH上),则“拼搏兔”所在正方形EFGH的边长是 . 三、解答题(本题有8小题,共66分) 17.(6分)计算:(﹣2)3+12×8. 18.(6分)化简:(a+b)2﹣b(2a+b). 19.(6分)已知抛物线y=2x2﹣4x+c与x轴有两个不同的交点. (1)求c的取值范围; (2)若抛物线y=2x2﹣4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由. 20.(8分)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表. 某校抽查的学生文章阅读的篇数统计表 文章阅读的篇数(篇) 3 4 5 6 7及以上 人数(人) 20 28 m 16 12 请根据统计图表中的信息,解答下列问题: (1)求被抽查的学生人数和m的值; (2)求本次抽查的学生文章阅读篇数的中位数和众数; (3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数. 21.(8分)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF. (1)求证:四边形BEFD是平行四边形; (2)若∠AFB=90°,AB=6,求四边形BEFD的周长. 22.(10分)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA和折线B﹣C﹣D 分别表示甲、乙离开小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整). 根据图1和图2中所给信息,解答下列问题: (1)求甲步行的速度和乙出发时甲离开小区的路程; (2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离; (3)在图2中,画出当25≤x≤30时s关于x的函数的大致图象.(温馨提示:请画在答题卷相对应的图上) 23.(10分)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3). (1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长; (2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,22为半径画圆. ①当点Q与点C重合时,求证:直线l1与⊙Q相切; ②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由. 24.(12分)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=33,D是BC的中点. (1)求OC的长和点D的坐标; (2)如图2,M是线段OC上的点,OM=23OC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F. ①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标; ②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长. 2019年浙江省湖州市中考数学试卷 参考答案与试题解析 一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分。 1.(3分)数2的倒数是( ) A.﹣2 B.2 C.-12 D.12 【解答】解:2的倒数是12; 故选:D. 2.(3分)据统计,龙之梦动物世界在2019年“五一”小长假期间共接待游客约238000人次.用科学记数法可将238000表示为( ) A.238×103 B.23.8×104 C.2.38×105 D.0.238×106 【解答】解:238000=2.38×105 故选:C. 3.(3分)计算a-1a+1a,正确的结果是( ) A.1 B.12 C.a D.1a 【解答】解:原式=a-1+1a=1. 故选:A. 4.(3分)已知∠α=60°32′,则∠α的余角是( ) A.29°28′ B.29°68′ C.119°28′ D.119°68′ 【解答】解:∵∠α=60°32′, ∠α的余角是为:90°﹣60°32′=29°28′, 故选:A. 5.(3分)已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是( ) A.60πcm2 B.65πcm2 C.120πcm2 D.130πcm2 【解答】解:这个圆锥的侧面积=12×2π×5×13=65π(cm2). 故选:B. 6.(3分)已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( ) A.110 B.910 C.15 D.45 【解答】解:从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率=210=15. 故选:C. 7.(3分)如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是( ) A.60° B.70° C.72° D.144° 【解答】解:∵五边形ABCDE为正五边形, ∴∠ABC=∠C=(5-2)×180°5=108°, ∵CD=CB, ∴∠CBD=180°-108°2=36°, ∴∠ABD=∠ABC﹣∠CBD=72°, 故选:C. 8.(3分)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是( ) A.24 B.30 C.36 D.42 【解答】解:过D作DH⊥AB交BA的延长线于H, ∵BD平分∠ABC,∠BCD=90°, ∴DH=CD=4, ∴四边形ABCD的面积=S△ABD+S△BCD=12AB•DH+12BC•CD=12×6×4+12×9×4=30, 故选:B. 9.(3分)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是( ) A.22 B.5 C.352 D.10 【解答】解:如图,经过P、Q的直线则把它剪成了面积相等的两部分, 由图形可知△AMC≌△FPE≌△BPD, ∴AM=PB, ∴PM=AB, ∵PM=32+12=10, ∴AB=10, 故选:D. 10.(3分)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是( ) A. B. C. D. 【解答】解:y=ax2+bxy=ax+b解得x=-bay=0或x=1y=a+b. 故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x 轴上为(0,-ba)或点(1,a+b). 在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,-ba<0,a+b>0,故选项A错误; 在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B错误; 在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C错误; 在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D正确; 故选:D. 二、填空题(本题有6小题,每小题4分,共24分) 11.(4分)分解因式:x2﹣9= (x+3)(x﹣3) . 【解答】解:x2﹣9=(x+3)(x﹣3). 故答案为:(x+3)(x﹣3). 12.(4分)已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是 30° . 【解答】解:∵一条弧所对的圆周角的度数是15°, ∴它所对的圆心角的度数为2×15°=30°. 故答案为30°. 13.(4分)学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是 9.1 分. 【解答】解:该班的平均得分是:120×(5×8+8×9+7×10) =9.1(分). 故答案为:9.1. 14.(4分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB和CD分别是两根不同长度的支撑杆,夹角∠BOD=α.若AO=85cm,BO=DO=65cm.问:当α=74°时,较长支撑杆的端点A离地面的高度h约为 120 cm.(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.) 【解答】解:过O作OE⊥BD,过A作AF⊥BD,可得OE∥AF, ∵BO=DO, ∴OE平分∠BOD, ∴∠BOE=12∠BOD=12×74°=37°, ∴∠FAB=∠BOE=37°, 在Rt△ABF中,AB=85+65=150cm, ∴h=AF=AB•cos∠FAB=150×0.8=120cm, 故答案为:120 15.(4分)如图,已知在平面直角坐标系xOy中,直线y=12x﹣1分别交x轴,y轴于点A和点B,分别交反比例函数y1=kx(k>0,x>0),y2=2kx(x<0)的图象于点C和点D,过点C作CE⊥x轴于点E,连结OC,OD.若△COE的面积与△DOB的面积相等,则k的值是 2 . 【解答】解:令x=0,得y=12x﹣1=﹣1, ∴B(0,﹣1), ∴OB=1, 把y=12x﹣1代入y2=2kx(x<0)中得,12x﹣1=2kx(x<0), 解得,x=1-4k+1, ∴xD=1-4k+1, ∴S△OBD=12OB⋅|xD|=124k+1-12, ∵CE⊥x轴, ∴S△OCE=12k, ∵△COE的面积与△DOB的面积相等, ∴124k+1-12=12k, ∴k=2,或k=0(舍去). 故答案为:2. 16.(4分)七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为42的正方形ABCD可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图2所示的“拼搏兔”造型(其中点Q、R分别与图2中的点E、G重合,点P在边EH上),则“拼搏兔”所在正方形EFGH的边长是 45 . 【解答】解:如图2中,连接EG,作GM⊥EN交EN的延长线于M. 在Rt△EMG中,∵GM=4,EM=2+2+4+4=12, ∴EG=EM2+GM2=122+42=410, ∴EH=EG2=45, 故答案为45. 三、解答题(本题有8小题,共66分) 17.(6分)计算:(﹣2)3+12×8. 【解答】解:(﹣2)3+12×8=﹣8+4=﹣4; 18.(6分)化简:(a+b)2﹣b(2a+b). 【解答】解:原式=a2+2ab+b2﹣2ab﹣b2 =a2. 19.(6分)已知抛物线y=2x2﹣4x+c与x轴有两个不同的交点. (1)求c的取值范围; (2)若抛物线y=2x2﹣4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由. 【解答】解:(1)∵抛物线y=2x2﹣4x+c与x轴有两个不同的交点, ∴△=b2﹣4ac=16﹣8c>0, ∴c<2; (2)抛物线y=2x2﹣4x+c的对称轴为直线x=1, ∴A(2,m)和点B(3,n)都在对称轴的右侧, 当x≥1时,y随x的增大而增大, ∴m<n; 20.(8分)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表. 某校抽查的学生文章阅读的篇数统计表 文章阅读的篇数(篇) 3 4 5 6 7及以上 人数(人) 20 28 m 16 12 请根据统计图表中的信息,解答下列问题: (1)求被抽查的学生人数和m的值; (2)求本次抽查的学生文章阅读篇数的中位数和众数; (3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数. 【解答】解:(1)被调查的总人数为16÷16%=100人, m=100﹣(20+28+16+12)=24; (2)由于共有100个数据,其中位数为第50、51个数据的平均数, 而第50、51个数据均为5篇, 所以中位数为5篇, 出现次数最多的是4篇, 所以众数为4篇; (3)估计该校学生在这一周内文章阅读的篇数为4篇的人数为800×28100=224人. 21.(8分)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF. (1)求证:四边形BEFD是平行四边形; (2)若∠AFB=90°,AB=6,求四边形BEFD的周长. 【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点, ∴DF∥BC,EF∥AB, ∴DF∥BE,EF∥BD, ∴四边形BEFD是平行四边形; (2)解:∵∠AFB=90°,D是AB的中点,AB=6, ∴DF=DB=DA=12AB=3, ∵四边形BEFD是平行四边形, ∴四边形BEFD是菱形, ∵DB=3, ∴四边形BEFD的周长为12. 22.(10分)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA和折线B﹣C﹣D分别表示甲、乙离开小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整). 根据图1和图2中所给信息,解答下列问题: (1)求甲步行的速度和乙出发时甲离开小区的路程; (2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离; (3)在图2中,画出当25≤x≤30时s关于x的函数的大致图象.(温馨提示:请画在答题卷相对应的图上) 【解答】解:(1)由图可得, 甲步行的速度为:2400÷30=80(米/分), 乙出发时甲离开小区的路程是10×80=800(米), 答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米; (2)设直线OA的解析式为y=kx, 30k=2800,得k=80, ∴直线OA的解析式为y=80x, 当x=18时,y=80×18=1440, 则乙骑自行车的速度为:1440÷(18﹣10)=180(米/分), ∵乙骑自行车的时间为:25﹣10=15(分钟), ∴乙骑自行车的路程为:180×15=2700(米), 当x=25时,甲走过的路程为:80×25=2000(米), ∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米), 答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米; (3)乙步行的速度为:80﹣5=75(米/分), 乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分), 当25≤x≤30时s关于x的函数的大致图象如右图所示. 23.(10分)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3). (1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长; (2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,22为半径画圆. ①当点Q与点C重合时,求证:直线l1与⊙Q相切; ②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由. 【解答】解:(1)如图1,连接BC, ∵∠BOC=90°,∴点P在BC上, ∵⊙P与直线l1相切于点B, ∴∠ABC=90°,而OA=OB, ∴△ABC为等腰直角三角形, 则⊙P的直径长=BC=AB=32; (2)过点作CM⊥AB, 由直线l2:y=3x﹣3得:点C(1,0), 则CM=ACsin45°=4×22=22=圆的半径, 故点M是圆与直线l1的切点, 即:直线l1与⊙Q相切; (3)如图3, ①当点M、N在两条直线交点的下方时, 由题意得:MQ=NQ,∠MQN=90°, 设点Q的坐标为(m,3m﹣3),则点N(m,m+3), 则NQ=m+3﹣3m+3=22, 解得:m=3-2; ②当点M、N在两条直线交点的上方时, 同理可得:m=3+2; 故点P的坐标为(3-2,6﹣32)或(3+2,6+32). 24.(12分)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=33,D是BC的中点. (1)求OC的长和点D的坐标; (2)如图2,M是线段OC上的点,OM=23OC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F. ①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标; ②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点 M时,点G也随之运动,请直接写出点G运动路径的长. 【解答】解:(1)∵OA=3,tan∠OAC=OCOA=33, ∴OC=3, ∵四边形OABC是矩形, ∴BC=OA=3, ∵D是BC的中点, ∴CD=12BC=32, ∴D(32,3); (2)①∵tan∠OAC=33, ∴∠OAC=30°, ∴∠ACB=∠OAC=30°, 设将△DBF沿DE所在的直线翻折后,点B恰好落在AC上的B'处, 则DB'=DB=DC,∠BDF=∠B'DF, ∴∠DB'C=∠ACB=30° ∴∠BDB'=60°, ∴∠BDF=∠B'DF=30°, ∵∠B=90°, ∴BF=BD•tan30°=32, ∵AB=3, ∴AF=BF=32, ∵∠BFD=∠AEF, ∴∠B=∠FAE=90°, ∴△BFD≌△AFE(ASA), ∴AE=BD=32, ∴OE=OA+AE=92, ∴点E的坐标(92,0); ②动点P在点O时, ∵抛物线过点P(0,0)、D(32,3)、B(3,3) 求得此时抛物线解析式为y=-29x2+3x, ∴E(92,0), ∴直线DE:y=-33x+32, ∴F1(3,123); 当动点P从点O运动到点M时, ∵抛物线过点P(0,233)、D(32,3)、B(3,3) 求得此时抛物线解析式为y=-2273x2+33x+233, ∴E(6,0), ∴直线DE:y=-239x+433, ∴F2(3,233); ∴点F运动路径的长为F1F2=233-32=36, ∵△DFG为等边三角形, ∴G运动路径的长为36. 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/6/30 10:03:00;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521查看更多