- 2021-11-01 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级下册数学教案 4-3 第2课时 完全平方公式 北师大版
第2课时 完全平方公式 1.理解完全平方公式,弄清完全平方公式的形式和特点;(重点)[来源:学§科§网] 2.掌握运用完全平方公式分解因式的方法,能正确运用完全平方公式把多项式分解因式.(难点) [来源:学#科#网] 一、情境导入 1.分解因式: (1)x2-4y2;(2)3x2-3y2;(3)x4-1;(4)(x+3y)2-(x-3y)2; 2.根据学习用平方差公式分解因式的经验和方法,你能将形如“a2+2ab+b2、a2-2ab+b2”的式子分解因式吗? 二、合作探究 探究点一:用完全平方公式因式分解 【类型一】 判定能否利用完全平方公式分解因式 下列多项式能用完全平方公式分解因式的有( )[来源:学#科#网] (1)a2+ab+b2;(2)a2-a+;(3)9a2-24ab+4b2;(4)-a2+8a-16. A.1个 B.2个 C.3个 D.4个 解析:(1)a2+ab+b2,乘积项不是两数的2倍,不能运用完全平方公式;(2)a2-a+=(a-)2;(3)9a2-24ab+4b2,乘积项是这两数的4倍,不能用完全平方公式;(4)-a2+8a-16=-(a2-8a+16)=-(a-4)2.所以(2)(4)能用完全平方公式分解.故选B. 方法总结:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. 【类型二】 运用完全平方公式分解因式 因式分解: (1)-3a2x2+24a2x-48a2; (2)(a2+4)2-16a2. 解析:(1)有公因式,因此要先提取公因式-3a2,再把另一个因式(x2-8x+16)用完全平方公式分解;(2)先用平方差公式,再用完全平方公式分解. 解:(1)原式=-3a2(x2-8x+16)=-3a2(x-4)2;[来源:Z_xx_k.Com] (2)原式=(a2+4)2-(4a)2=(a2+4+4a)(a2+4-4a)=(a+2)2(a-2)2. 方法总结:分解因式的步骤是一提、二用、三查,即有公因式的首先提公因式,没有公因式的用公式,最后检查每一个多项式的因式,看能否继续分解. 探究点二:用完全平方公式因式分解的应用 【类型一】 运用因式分解进行简便运算 利用因式分解计算: (1)342+34×32+162; (2)38.92-2×38.9×48.9+48.92. 解析:利用完全平方公式转化为(a±b)2的形式后计算即可. 解:(1)342+34×32+162=(34+16)2=2500; (2)38.92-2×38.9×48.9+48.92=(38.9-48.9)2=100. 方法总结:此题主要考查了运用公式法分解因式,正确掌握完全平方公式是解题关键. 【类型二】 利用因式分解判定三角形的形状[来源:学科网] 已知a,b,c分别是△ABC三边的长,且a2+2b2+c2-2b(a+c)=0,请判断△ABC的形状,并说明理由. 解析:首先利用完全平方公式分组进行因式分解,进一步分析探讨三边关系得出结论即可. 解:由a2+2b2+c2-2b(a+c)=0,得a2-2ab+b2+b2-2bc+c2=0,即(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c,∴△ABC是等边三角形. 方法总结:通过配方将原式转化为非负数的和的形式,然后利用非负数性质解答,这是解决此类问题一般的思路. 【类型三】 整体代入求值 已知a+b=5,ab=10,求a3b+a2b2+ab3的值. 解析:将a3b+a2b2+ab3分解为ab与(a+b)2的乘积,因此可以运用整体代入的数学思想来解答. 解:a3b+a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2.当a+b=5,ab=10时,原式=×10×52=125. 方法总结:解答此类问题的关键是对原式进行变形,将原式转化为含已知代数式的形式,然后整体代入. 三、板书设计 1.完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2. 2.完全平方公式的特点: (1)必须是三项式(或可以看成三项的); (2)有两个同号的平方项; (3)有一个乘积项(等于平方项底数的±2倍). 简记口诀:首平方,尾平方,首尾两倍在中央. 本节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,千万不可拔苗助长,为了后面多做几道练习而主观裁断时间安排.其实公式的探究活动本身既是对学生能力的培养,又是对公式的识记过程,而且还可以提高他们应用公式的本领.查看更多