- 2021-10-27 发布 |
- 37.5 KB |
- 16页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级下数学课件二次根式的乘除法(2)_鲁教版
二次根式的 乘除法(2) 1.计算下列各式,观察计算结果,你会发现什么规律? 4 41 ( ) ( )99 16 162 .2525 , ; , 2 2 2 21 ______ ; 2 ______ .3 53 5 0, 0 .a a a bbb 2.用你发现的规律填空,并用计算器进行验算: 一般地,对二次根式的除法规定 探 究 2 3 2 3 4 5 4 5 = = 例4 计算: 24 3 11 ; 2 .2 183 ;222483 24 3 241 解: 3 1 3 1 32 18 3 9 3 3.2 18 2 18 2 b a b a 把 反过来,就得到 0, 0 .a a a bb b 利用它可以进行二次根式的化简. 问题探究 例1 化简: 2 3 251 ; 2 .100 9 y x 3 3 31 100 10100 解: ; 2 2 25 525 2 .9 39 y yy x xx 例题解析 例6 计算: 3 3 2 81 ; 2 ; 3 . 5 27 2a 2 1 3 3 3 5 15 15 .5 5 5 5 55 解: 解法一: = = = 2 3 3 5 15 15 .55 5 5 5 解法二: = = = 2 3 2 3 2 2 2 3 6 2 .327 3 3 33 3 = = = = 8 8 2 4 2 3 .22a 2 2 a a a a aa a = 在解法二中式子 变形 是为了去掉 分母中的根号 55 53= 5 3 在二次根式的 运算中,最后 的结果一般要 求分母中不含 二次根式 观察上面例4、例5、例6中各类小题的最后结果,比如 等,你发现有何特点? a a2 19 322 、、 被开方数4ab含4,a,b这样的因数或因式, 他们可以开方后移到根号外,它们是开得 尽的因数或因式. (1)被开方数不含分母; (2)被开方数中不含能开得尽的方的因数或因式. 我们把满足上述两个条件的二次根式,叫做最简二次根式. 议一议 例7 如图,在Rt△ABC中,∠C=90°,AC= 2.5cm,BC=6cm,求AB的长. 解:因为AB2=AC2+BC2, 所以 2 2 2 2 2 5 2.5 6 362 169 169 13 6.5cm4 24 AB AC BC 由此AB长为6.5cm. A B C 6cm 2.5cm 例题解析 如果两个电视塔高分别是h1km,h2km,那么 它们的传播半径的比为 这个式子还 可以化简: 2 1 2 2 Rh Rh 1 1 1 1 2 22 2 2 2 2 . 2 2 Rh R h h h h hRh R h h 现在我们来解答本章引言中的问题: 引入新知 1. 计算: = 2181 = 6 722 = aa 623 24 5 20 b b a 2 721 18 2; 2 ; 3 2 6 ; 4 .5 206 b ba a a 解: = 2 18 = 2 18 =9 3; = 6 72 =12 =34 2 3; a a 6 2 a a 6 2 3 1 3 3 ; 220 5 a b b b ab 220 5 4a 2 .a 课内练习 2. 把下列二次根式化成最简二次根式: 41 32; 2 40; 3 1.5; 4 .3 解: 321 402 5.13 3 44 216 216 4 2; 104 2 10; 2 3 2 3 22 23 6 2 ; 33 34 2 3 .3 课内练习 3.如图,在Rt△ABC中, ∠C=90°, ∠ A=30 ° , AC=2cm,求斜边AB的长. A B C 30° 2cm 解: 设BC=x 又在Rt△ABC中∠ A=30 ° ∴AB=2x. 由勾股定理 AB2=AC2+BC2 ∴ ( 2x )2=22+x2. ∴3x2 = 4. 4 3x 2 3 .3 4 32 .3AB x 4 3 3 答:斜边AB为 cm. 课内练习 )(,,, ,,,,, 222 32 55 3 22 27591812 baxyabyx abcyxxa 问题探究 2 1223 222 330 2 523 8302 3 原式解 : ))(( 2 581022 3 ))(( 5 28102 1 2 3 244 3 23 abba baab b a b a b a b a 2 2 3222 22 879 446 4521294 43312592241 c ba cba )()( )()( )()()( 1. 利用商的算术平方根的性质化简二次根式. )0b0≥( ,ab a b a 3. 在进行分母有理化之前,可以先把能化简的二 次根式化简,再考虑如何化去分母中的根号. 2. 二次根式的除法有两种常用方法: (1)利用公式: ; (2)把除法先写成分式的形式,再化简为最 简二次根式. 课堂小结查看更多