- 2021-10-26 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
第十三章轴对称13-1轴对称13-1-2线段的垂直平分线的性质第1课时线段的垂直平分线的性质与判定教案新版 人教版
13.1.2 线段的垂直平分线的性质 第1课时 线段的垂直平分线的性质与判定 掌握线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题. 重点 线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题. 难点 灵活运用线段的垂直平分线的性质和判定解题. 一、问题导入 我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.那么,线段的垂直平分线有什么性质呢?这节课我们就来研究它. 二、探究新知 (一)线段的垂直平分线的性质 教师出示教材第61页探究,让学生测量,思考有什么发现? 如图,直线l垂直平分线段AB,P1,P2,P3…是l上的点,分别量一量点P1,P2,P3…到点A与点B的距离,你有什么发现? 学生回答,教师小结:线段垂直平分线上的点与这条线段两个端点的距离相等. 性质的证明: 教师讲解题意并在黑板上绘出图形:上述问题用数学语言可以这样表示:如图,设直线MN是线段AB的垂直平分线,点C是垂足,点P是直线MN上任意一点,连接PA,PB,我们要证明的是PA=PB. 教师分析证明思路:图中有两个直角三角形,△APC和△BPC,只要证明这两个三角形全等,便可证得PA=PB. 教师要求学生自己写已知,求证,自己证明. 学生证明完后教师板书证明过程供学生对照. 已知:MN⊥AB,垂足为点C,AC=BC,点P是直线MN上任意一点.求证:PA=PB. 证明:在△APC和△BPC中, ∵PC=PC(公共边),∠PCB=∠PCA(垂直定义),AC=BC(已知), 4 ∴△APC≌△BPC(SAS). ∴PA=PB(全等三角形的对应边相等). 因为点P是线段的垂直平分线上一点,于是就有:线段垂直平分线上的点与这条线段两个端点的距离相等. (二)线段的垂直平分线的判定 你能写出上面这个命题的逆命题吗?它是真命题吗?这个命题不是“如果…那么…”的形状,要写出它的逆命题,需分析命题的条件和结论,将原命题写成“如果…那么…”的形式,逆命题就容易写出.鼓励学生找出原命题的条件和结论. 原命题的条件是“有一个点是线段垂直平分线上的点”,结论是“这个点与这条线段两个端点的距离相等”. 此时,逆命题就很容易写出来.“如果有一个点与线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.” 写出逆命题后,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明.请同学们自行在练习册上完成. 学生给出了如下的四种证法. 已知:线段AB,点P是平面内一点,且PA=PB. 求证:P点在AB的垂直平分线上. 证法一 过点P作已知线段AB的垂线PC,∵PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL).∴AC=BC,即P点在AB的垂直平分线上. 证法二 取AB的中点C,过P,C作直线.∵PA=PB,PC=PC,AC=CB,∴△APC≌△BPC(SSS). ∴∠PCA=∠PCB(全等三角形的对应角相等). 又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,即PC⊥AB,∴P点在AB的垂直平分线上. 证法三 过P点作∠APB的平分线. ∵PA=PB,∠1=∠2,PC=PC,△APC≌△BPC(SAS). ∴AC=BC,∠PCA=∠PCB(全等三角形的对应边相等,对应角相等). 又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,∴P点在AB的垂直平分线上. 证法四 过P作线段AB的垂直平分线PC. 4 ∵AC=CB,∠PCA=∠PCB=90°,∴P在AB的垂直平分线上. 四种证法由学生表述后,有学生提问:“前三个同学的证明是正确的,而第四个同学的证明我有点弄不懂.” 师生共析:如图(1),PD⊥AB,D是垂足,但D不平分AB;如图(2),PD平分AB,但PD不垂直于AB.这说明一般情况下,“过P作AB的垂直平分线”是不可能实现的,所以第四个同学的证法是错误的. 从同学们的推理证明过程可知线段的垂直平分线的性质的逆命题是真命题,我们把它称为线段的垂直平分线的判定. 要作出线段的垂直平分线,根据垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上,那么我们必须找到两个与线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线. 下面我们一同来写出已知、求作、作法,体会作法中每一步的依据. 例1 尺规作图:经过已知直线外一点作这条直线的垂线. 已知:直线AB和AB外一点C.(如下图) 求作:AB的垂线,使它经过点C. 作法:(1)任意取一点K,使点K和点C在AB的两旁. (2)以点C为圆心,CK长为半径作弧,交AB于点D和点E. (3)分别以点D和点E为圆心,大于DE的长为半径作弧,两弧相交于点F. (4)作直线CF. 直线CF就是所求作的垂线. 师:根据上面作法中的步骤,想一想,为什么直线CF就是所求作的垂线?请与同伴进行交流. 生:从作法的第(2)(3)步可知CD=CE,DF=EF, ∴C,F都在AB的垂直平分线上(线段的垂直平分线的判定). ∴CF就是线段AB的垂直平分线(两点确定一条直线). 师:我们曾用刻度尺找线段的中点,当我们学习了线段的垂直平分线的作法时, 4 一旦垂直平分线作出,线段与线段的垂直平分线的交点就是线段AB的中点,所以我们也用这种方法找线段的中点. 三、课堂练习 教材第62页练习第1,2题. 四、课堂小结 本节课我们学习了线段的垂直平分线的性质和判定,并学会了用尺规作线段的垂直平分线. 五、布置作业 1.教材习题13.1第6题. 2.补充题: (1)下图是某跨河大桥的斜拉索,图中PA=PB,PO⊥AB,则必有AO=BO,为什么? (2)如左下图,△ABC中,AC=16 cm,DE为AB的垂直平分线,△BCE的周长为26 cm.求BC的长. (3)有A,B,C三个村庄(如右上图),现准备建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置. 本节证明了线段的中垂线的性质定理及判定定理、用尺规作线段的中垂线.在课堂中,学生证明过程、作图方法原理的理解及掌握都比较好,但要强调作业中不用三角板等工具而要用尺规来作图,解决实际问题时可以直接用定理而不是借助于全等. 4查看更多