- 2022-04-01 发布 |
- 37.5 KB |
- 33页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
人教版八年级数学上册期末考试复习第十五章分式复习教学课件
第十五章分式人教版八年级数学上册章节复习 要点梳理一、分式1.分式的概念:一般地,如果A、B都表示整式,且B中含有字母,那么称为分式.其中A叫做分式的分子,B为分式的分母.2.分式有意义的条件:对于分式:当_______时分式有意义;当_______时无意义.B≠0B=0 3.分式值为零的条件:当___________时,分式的值为零.A=0且B≠04.分式的基本性质: 5.分式的约分:约分的定义根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.最简分式的定义分子与分母没有公因式的式子,叫做最简分式注意:分式的约分,一般要约去分子和分母所有的公因式,使所得的结果成为最简分式或整式. 约分的基本步骤(1)若分子﹑分母都是单项式,则约去系数的最大公约数,并约去相同字母的最低次幂;(2)若分子﹑分母含有多项式,则先将多项式分解因式,然后约去分子﹑分母所有的公因式. 6.分式的通分:分式的通分的定义根据分式的基本性质,使分子、分母同乘适当的整式(即最简公分母),把分母不相同的分式变成分母相同的分式,这种变形叫分式的通分.最简公分母为通分先要确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,叫做最简公分母. 二、分式的运算1.分式的乘除法则:2.分式的乘方法则: 3.分式的加减法则:(1)同分母分式的加减法则:(2)异分母分式的加减法则: 4.分式的混合运算:先算乘方,再算乘除,最后算加减,有括号的先算括号里面的.计算结果要化为最简分式或整式. 三、分式方程1.分式方程的定义分母中含未知数的方程叫做分式方程.2.分式方程的解法(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程.(2)解这个整式方程.(3)把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则须舍去. 3.分式方程的应用列分式方程解应用题的一般步骤(1)审:清题意,并设未知数;(2)找:相等关系;(3)列:出方程;(4)解:这个分式方程;(5)验:根(包括两方面:是否是分式方程的根;是否符合题意);写:答案. 考点一分式的有关概念例1如果分式的值为0,那么x的值为.【解析】根据分式值为0的条件:分子为0而分母不为0,列出关于x的方程,求出x的值,并检验当x的取值时分式的分母的对应值是否为零.由题意可得:x2-1=0,解得x=±1.当x=-1时,x+1=0;当x=1时,x+1≠0.【答案】1考点讲练 分式有意义的条件是分母不为0,分式无意义的条件是分母的值为0;分式的值为0的条件是:分子为0而分母不为0.归纳总结 针对训练2.如果分式的值为零,则a的值为.21.若分式无意义,则a的值.-3 考点二分式的性质及有关计算B例2如果把分式 中的x和y的值都扩大为原来的3倍,则分式的值( )A.扩大为原来的3倍B.不变C.缩小为原来的D.缩小为原来的 针对训练C3.下列变形正确的是() 例3已知x=,y=,求值.【解析】本题中给出字母的具体取值,因此要先化简分式再代入求值.把x=,y=代入得解:原式=原式= 对于一个分式,如果给出其中字母的取值,我们可以先将分式进行化简,再把字母取值代入,即可求出分式的值.但对于某些分式的求值问题,却没有直接给出字母的取值,而只是给出字母满足的条件,这样的问题较复杂,需要根据具体情况选择适当的方法.归纳总结 4.有一道题:“先化简,再求值:,其中”.小玲做题时把错抄成,但她的计算结果也是正确的,请你解释这是怎么回事?针对训练解:所以结果与x的符号无关 例4解析:本题若先求出a的值,再代入求值,显然现在解不出a的值,如果将的分子、分母颠倒过来,即求的值,再利用公式变形求值就简单多了. 利用x和1/x互为倒数的关系,沟通已知条件与所求未知代数式的关系,可以使一些分式求值问题的思路豁然开朗,使解题过程简洁.归纳总结 5.已知x2-5x+1=0,求出的值.解:因为x2-5x+1=0,得即所以针对训练 考点三分式方程的解法例5解下列分式方程:【解析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可确定出分式方程的解.解:(1)去分母得x+1+x﹣1=0,解得x=0,经检验x=0是分式方程的解;(2)去分母得x﹣4=2x+2﹣3,解得x=﹣3,经检验x=﹣3是分式方程的解. 解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.归纳总结 解:最简公分母为(x+2)(x﹣2),去分母得(x﹣2)2﹣(x+2)(x﹣2)=16,整理得﹣4x+8=16,解得x=﹣2,经检验x=﹣2是增根,故原分式方程无解.针对训练 考点四分式方程的应用例6从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;解析:(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可;解:(1)根据题意得400×1.3=520(千米).答:普通列车的行驶路程是520千米; (2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.解析:设普通列车的平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可. 解:设普通列车的平均速度是x千米/时,则高铁的平均速度是2.5x千米/时,根据题意得解得x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时).答:高铁的平均速度是300千米/时. 针对训练7.某施工队挖掘一条长90米的隧道,开工后每天比原计划多挖1米,结果提前3天完成任务,原计划每天挖多少米?若设原计划每天挖x米,则依题意列出正确的方程为()A.B.C.D.D 8.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.求第一次每支铅笔的进价是多少元?解:设第一次每支铅笔进价为x元,根据题意列方程,得解得x=4.经检验,故x=4原分式方程的解.答:第一次每支铅笔的进价为4元. 考点五本章数学思想和解题方法主元法例7.已知:,求的值.【解析】由已知可以变形为用b来表示a的形式,可得,代入约分即可求值.解:∵,∴.∴ 已知字母之间的关系式,求分式的值时,可以先用含有一个字母的代数式来表示另一个字母,然后把这个关系式代入到分式中即可求出分式的值.这种方法即是主元法,此方法是在众多未知元之中选取某一元为主元,其余视为辅元.那么这些辅元可以用含有主元的代数式表示,这样起到了减元之目的,或者将题中的几个未知数中,正确选择某一字母为主元,剩余的字母视为辅元,达到了化繁入简之目的,甚至将某些数字视为主元,字母变为辅元,起到化难为易的作用.归纳总结 解:由,得,把代入可得原式=9.已知,求的值.本题还可以由已知条件设x=2m,y=3m.针对训练查看更多