- 2022-04-01 发布 |
- 37.5 KB |
- 16页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级数学上册第一章勾股定理本章归纳总结课件 北师大版
本章归纳总结 知识结构 释疑解惑,加深理解1.勾股定理的证明:勾股定理的证明方法有多种,一般是采用剪拼的方法,它把“数与形”巧妙地联起来,是几何体与代数沟通的桥梁,同时也为后面的四边形、圆、图形交换,三角函数等的互化的学习提供了方法和依据。 2.勾股定理中的分类讨论在勾股定理的写法运用中,如果不说明给出直角三角形中有两条边的长,要求第三条边的长就需要分两种情况讨论,即第一种情况是告诉两条直角边长求斜边,第二种情况是告诉一条直角边和斜边长求另一条直角边。 3.曲面两点间的距离问题在解决曲面中两点间的距离时,往往是要将曲面问题转化为同一平面内两点之间的距离,这是解决问题的关键. 例1:如图所示,在平面直角会标系中,点P的坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间典例精析,复习新知 例2在△ABC中,AB=2,BC=1,∠ABC=45°以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为。 例3一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕是DE(如图所示),求CD的长.分析:设CD为x,∵AD=BD,∴AD=8-x.∴在△ACD中,根据勾股定理列出关于x的方程即可求解. 例4有一个立方体礼盒如图所示,在底部A处有一只壁虎,C′处有一只蚊子,壁虎急于捕捉到蚊子充饥.(1)试确定壁虎所走的最短路线;(2)若立方体礼盒的棱长为20cm,则壁虎如果想在半分钟内捕捉到蚊子,每分钟至少要爬行多少厘米?(保留整数)分析:求几何表面的最短距离时,通常可以将几何体表面展开,把立体图形转化为平面图形. 复习训练,巩固提高查看更多