- 2021-07-01 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018届二轮复习专题01如何破解集合间的关系类问题学案(全国通用)
专题01 如何破解集合间的关系类问题 考纲要求: 1.理解集合之间包含与相等的含义,能识别给定集合的子集. 2.在具体情境中,了解全集与空集的含义. 基础知识回顾:集合与集合之间的关系 1.集合间的基本关系 表示 关系 文字语言 符号语言 集合间的 基本关系 相等 集合A与集合B中的所有元素都相同 A=B 子集 A中任意一个元素均为B中的元素 A⊆B 真子集 A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素 AB 空集 空集是任何集合的子集,是任何非空集合的真子集 2.集合的基本运算 集合的并集 集合的交集 集合的补集 图形 语言 符号 语言 A∪B={x|x∈A,或x∈B} A∩B={x|x∈A,且x∈B} ∁UA={x|x∈U,且x∉A} 3.集合的运算性质 并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A. 交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B. 补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅;∁U(∁UA)=A. 应用举例: 招数一、韦恩图:一般地,若给定的集合元素离散或者是抽象集合,则用Venn图求解. 【例1】【2017湖南省长沙市长郡中学高三入学考试】已知集合A={-1,0,4},集合B={x|x2-2x-3≤0,x∈N},全集为U,则图中阴影部分表示的集合是________. 解析:∵B={x|x2-2x-3≤0,x∈N}={x|-1≤x≤3,x∈N}={0,1,2,3}.而图中阴影部分表示的为属于A且不属于B的元素构成的集合,故该集合为{-1,4}.答案:{-1,4} 【例2】【2017广东省珠海市高三9月摸底考试】设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=________. 解析: U={1,2,3,4,5,6,7,8,9,10},画出Venn图,如图所示,阴影部分就是所要求的集合,即(∁UA)∩B={7,9}. 【例3】【宁夏石嘴山市第三中学2017届高三下学期第三次模拟考试】设全集U=R,集合,则图中阴影部分所表示的集合为( ) A. B. C. D. 【答案】D 招数二、数轴图示法:若给定集合的元素连续,则用数轴图示法求解,用数轴表示时要注意端点值的取舍. 【例4】【2017山西省怀仁县第一中学高三月考】已知集合A={x|-2≤x≤7},B={x|a+1查看更多
相关文章
- 当前文档收益归属上传用户