【数学】2018届一轮复习人教A版第四章三角函数、解三角形第4讲函数y=Asin(ωx+φ)的图象及应用学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2018届一轮复习人教A版第四章三角函数、解三角形第4讲函数y=Asin(ωx+φ)的图象及应用学案

第4讲 函数y=Asin(ωx+φ)的图象及应用 最新考纲 1.了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响;2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.‎ 知 识 梳 理 ‎1.“五点法”作函数y=Asin(ωx+φ)(A>0,ω>0)的简图 ‎“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:‎ ‎(1)定点:如下表所示.‎ x ‎- ωx+φ ‎0‎ π ‎2π y=Asin(ωx+φ)‎ ‎0‎ A ‎0‎ ‎-A ‎0‎ ‎(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=Asin(ωx+φ)在一个周期内的图象.‎ ‎(3)扩展:将所得图象,按周期向两侧扩展可得y=Asin(ωx+φ)在R上的图象.‎ ‎2.函数y=Asin(ωx+φ)中各量的物理意义 当函数y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示简谐振动时,几个相关的概念如下表:‎ 简谐振动 振幅 周期 频率 相位 初相 y=Asin(ωx+φ)(A>0,ω>0),‎ x∈[0,+∞)‎ A T= f= ωx+φ φ ‎3.函数y=sin x的图象经变换得到y=Asin(ωx+φ)的图象的两种途径 诊 断 自 测 ‎1.判断正误(在括号内打“√”或“×”)‎ ‎(1)将函数y=3sin 2x的图象左移个单位长度后所得图象的解析式是y=3sin.(  )‎ ‎(2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.(  )‎ ‎(3)函数y=Acos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.(  )‎ ‎(4)由图象求解析式时,振幅A的大小是由一个周期内图象中最高点的值与最低点的值确定的.(  )‎ 解析 (1)将函数y=3sin 2x的图象向左平移个单位长度后所得图象的解析式是y=3cos 2x.‎ ‎(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为.故当ω≠1时平移的长度不相等.‎ 答案 (1)× (2)× (3)√ (4)√‎ ‎2.y=2sin的振幅、频率和初相分别为(  )‎ A.2,,- B.2,,- C.2,,- D.2,,- 答案 A ‎3.(2016·全国Ⅰ卷)若将函数y=2sin的图象向右平移个周期后,所得图象对应的函数为(  )‎ A.y=2sin B.y=2sin C.y=2sin D.y=2sin 解析 函数y=2sin的周期为π,将函数y=2sin的图象向右平移个周期即个单位,所得函数为y=2sin=2sin,故选D.‎ 答案 D ‎4.(2017·衡水中学金卷)将函数y=sin 的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位,所得函数图象的一个对称中心是(  )‎ A. B. C. D. 解析 将函数y=sin的图象上各点的横坐标伸长到原来的3倍,可得函数y=sin的图象,再向 右平移个单位长度,所得函数的解析式为y=sin 2x,‎ 令2x=kπ,x=(k∈Z),故所得函数的对称中心为,(k∈Z),故所得函数的一个对称中心是,故选D.‎ 答案 D ‎5.(2017·金华调研)函数f(x)=2sin(ωx+φ) 的图象如图所示,则ω=________,φ=________.‎ 解析 由题中图象知T=π,∴ω=2,把(0,1)代入f(x)=2sin(2x+φ),得1=2sin φ,∴sin φ=,∵|φ|<,∴φ=.‎ 答案 2  ‎6.(必修4P60例1改编)如图,某地一天,从6~14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b(A>0,ω>0,0<φ<π),则这段曲线的函数解析式为________.‎ 解析 从图中可以看出,从6~14时是函数y=Asin(ωx+φ)+b的半个周期,又×=14-6,‎ 所以ω=.由图可得A=(30-10)=10,‎ b=(30+10)=20.又×10+φ=2π,解得φ=,‎ ‎∴y=10sin+20,x∈[6,14].‎ 答案 y=10sin+20,x∈[6,14]‎ 考点一 函数y=Asin(ωx+φ)的图象及变换 ‎【例1】 设函数f(x)=sin ωx+cos ωx(ω>0)的周期为π.‎ ‎(1)用五点法作出它在长度为一个周期的闭区间上的图象;‎ ‎(2)说明函数f(x)的图象可由y=sin x的图象经过怎样的变换而得到.‎ 解 f(x)=sin ωx+cos ωx ‎=2=2sin,‎ 又∵T=π,∴=π,‎ 即ω=2,∴f(x)=2sin.‎ ‎(1)令z=2x+,则y=2sin=2sin z.‎ 列表,并描点画出图象:‎ x ‎- z ‎0‎ π ‎2π y=sin z ‎0‎ ‎1‎ ‎0‎ ‎-1‎ ‎0‎ y=2sin ‎0‎ ‎2‎ ‎0‎ ‎-2‎ ‎0‎ ‎(2)法一 把y=sin x的图象上所有的点向左平移个单位,得到y=sin的图象;再把y=sin的图象上的点的横坐标缩短到原来的倍(纵坐标不变),得到y=sin的图象;最后把y=sin上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y=2sin的图象.‎ 法二 将y=sin x的图象上每一点的横坐标缩短为原来的倍(纵坐标不变),得到y=sin 2x的图象;再将y=sin 2x的图象向左平移个单位,得到y=sin 2=sin的图象;再将y=sin的图象上每一点的纵坐标伸长到原来的2倍(横坐标不变),得到y=2sin的图象.‎ 规律方法 作函数y=Asin(ωx+φ)(A>0,ω>0)的图象常用如下两种方法:‎ ‎(1)五点法作图,用“五点法”作y=Asin(ωx+φ)的简图,主要是通过变量代换,设z=ωx+φ,由z取0,,π,π,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象;‎ ‎(2)图象的变换法,由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.‎ ‎【训练1】 设函数f(x)=cos(ωx+φ)的最小正周期为π,且f=.‎ ‎(1)求ω和φ的值;‎ ‎(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.‎ 解 (1)∵T==π,ω=2,‎ 又f=cos=,‎ ‎∴sin φ=-,‎ 又-<φ<0,∴=-.‎ ‎(2)由(1)得f(x)=cos,列表:‎ ‎2x- ‎- ‎0‎ π π π x ‎0‎ π π π π f(x)‎ ‎1‎ ‎0‎ ‎-1‎ ‎0‎ 描点画出图象(如图).‎ 考点二 由图象求函数y=Asin(ωx+φ)的解析式 ‎【例2】 (1)将函数f(x)=sin(2x+θ)的图象向右平移φ(0<φ<π)个单位长度后,得到函数g(x)的图象,若f(x),g(x)的图象都经过点P,则φ的值为________.‎ ‎(2)函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为________.‎ 解析 (1)将函数f(x)=sin(2x+θ)的图象向右平移φ(0<φ<π)个单位长度后,得到函数g(x)=sin[2(x-φ)+θ]=sin(2x-2φ+θ)的图象,若f(x),g(x)的图象都经过点P,‎ 所以sin θ=,sin(-2φ+θ)=,‎ 所以θ=,sin=.又0<φ<π,所以-<-2φ<,所以-2φ=-.‎ 即φ=.‎ ‎(2)由题图可知A=,‎ 法一 =-=,‎ 所以T=π,故ω=2,‎ 因此f(x)=sin(2x+φ),‎ 又对应五点法作图中的第三个点,‎ 因此2×+φ=π,所以φ=,故f(x)=sin.‎ 法二 以为第二个“零点”,为最小值点,‎ 列方程组解得 故f(x)=sin.‎ 答案 (1) (2)f(x)=sin 规律方法 已知f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:‎ ‎(1)五点法,由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ;‎ ‎(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.‎ ‎【训练2】 (2016·全国Ⅱ卷)函数y=Asin(ωx+φ)的部分图象如图所示,则(  )‎ A.y=2sin B.y=2sin C.y=2sin D.y=2sin 解析 由题图可知,T=2=π,所以ω=2,由五点作图法可知2×+φ=,所以φ=-,所以函数的解析式为y=2sin,故选A.‎ 答案 A 考点三 三角函数模型及其应用 ‎【例3】 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-cost-sint,t∈[0,24).‎ ‎(1)求实验室这一天的最大温差;‎ ‎(2)若要求实验室温度不高于‎11 ℃‎,则在哪段时间实验室需要降温?‎ 解 (1)因为f(t)=10-2 ‎=10-2sin,‎ 又0≤t<24,所以≤t+<,‎ 当t=2时,sin=1;‎ 当t=14时,sin=-1.‎ 于是f(t)在[0,24)上取得最大值‎12 ℃‎,取得最小值‎8 ℃‎.‎ 故实验室这一天最高温度为‎12 ℃‎,最低温度为‎8 ℃‎,最大温差为‎4 ℃‎.‎ ‎(2)依题意,当f(t)>11时实验室需要降温,‎ 由(1)得f(t)=10-2sin,‎ 故有10-2sin>11,‎ 即sin<-.‎ 又0≤t<24,因此0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.‎ ‎(1)求a和ω的值;‎ ‎(2)求函数f(x)在[0,π]上的单调递减区间.‎ 解 (1)f(x)=4cos ωx· sin+a ‎=4cos ωx·+a ‎=2sin ωxcos ωx+2cos2ωx-1+1+a ‎=sin 2ωx+cos 2ωx+1+a ‎=2sin+1+a.‎ 当sin=1时,f(x)取得最大值2+1+a=3+a.‎ 又f(x)最高点的纵坐标为2,∴3+a=2,即a=-1.‎ 又f(x)图象上相邻两个最高点的距离为π,‎ ‎∴f(x)的最小正周期为T=π,‎ ‎∴2ω==2,ω=1.‎ ‎(2)由(1)得f(x)=2sin,‎ 由+2kπ≤2x+≤+2kπ,k∈Z,‎ 得+kπ≤x≤+kπ,k∈Z.‎ 令k=0,得≤x≤.‎ ‎∴函数f(x)在[0,π]上的单调递减区间为.‎ 规律方法 函数y=Asin(ωx+φ)(A>0,ω>0)的单调区间和对称性的确定,基本思想是把ωx+φ看做一个整体.在单调性应用方面,比较大小是一类常见的题目,依据是同一区间内函数的单调性.对称性是三角函数图象的一个重要性质,因此要抓住其轴对称、中心对称的本质,同时还要会综合利用这些性质解决问题,解题时可利用数形结合思想.‎ ‎【训练4】 已知函数f(x)=2sin·cos-sin(x+π).‎ ‎(1)求f(x)的最小正周期;‎ ‎(2)若将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.‎ 解 (1)f(x)=2sin·cos-sin(x+π)‎ ‎=cos x+sin x=2sin,于是T==2π.‎ ‎(2)由已知得g(x)=f=2sin,‎ ‎∵x∈[0,π],∴x+∈,‎ ‎∴sin∈,‎ ‎∴g(x)=2sin∈[-1,2],‎ 故函数g(x)在区间[0,π]上的最大值为2,最小值为-1.‎ ‎[思想方法]‎ ‎1.五点法作图及图象变换问题 ‎(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;‎ ‎(2)图象变换时的伸缩、平移总是针对自变量x而言,而不是看角ωx+φ的变化.‎ ‎2.由图象确定函数解析式 解决由函数y=Asin(ωx+φ)的图象确定A,ω,φ的问题时,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准第一个“零点”和第二个“零点”的位置.要善于抓住特殊量和特殊点.‎ ‎[易错防范]‎ ‎1.由函数y=sin x的图象经过变换得到y=Asin(ωx+φ)的图象,如先伸缩再平移时,要把x前面的系数提取出来.‎ ‎2.复合形式的三角函数的单调区间的求法.函数y=Asin(ωx+φ)(A>0,ω>0)的单调区间的确定,基本思想是把ωx+φ看做一个整体.若ω<0,要先根据诱导公式进行转化.‎ ‎3.求函数y=Asin(ωx+φ)在x∈[m,n]上的最值,可先求t=ωx+φ的范围,再结合图象得出y=Asin t的值域. ‎
查看更多

相关文章

您可能关注的文档