- 2021-07-01 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020届高考文科数学大二轮复习冲刺创新专题题型2解答题规范踩点多得分第
第3讲 数列 [考情分析] 数列为每年高考必考内容之一,题型不固定,等差、等比数列基本量和性质的考查是高考的热点,经常以客观题的形式呈现;数列求和及数列与函数、不等式的综合问题常以解答题的形式呈现,考查分析问题、解决问题的能力及转化与化归等数学思想方法. 热点题型分析 热点1 等差数列与等比数列的综合 1.等差(比)数列的运算策略 (1)在等差(比)数列中,首项a1和公差d(公比q)是两个最基本的元素; (2)在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解. 2.应用数列性质解题的方法 (1)抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解; (2)牢固掌握等差(比)数列的性质,可分为三类:①通项公式的变形;②等差(比)中项的变形;③前n项和公式的变形. (2018·全国卷Ⅲ)等比数列{an}中,a1=1,a5=4a3. (1)求{an}的通项公式; (2)记Sn为{an}的前n项和.若Sm=63,求m. 解 (1)设{an}的公比为q,由题设得an=qn-1. 由已知得q4=4q2,解得q=0(舍去),q=-2或q=2. 故an=(-2)n-1或an=2n-1. (2)若an=(-2)n-1,则Sn=. 由Sm=63得(-2)m=-188,此方程没有正整数解. 若an=2n-1,则Sn=2n-1. 由Sm=63得2m=64,解得m=6. 综上,m=6. - 11 - 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.有两个处理思路:一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,但在应用性质时要注意性质的前提条件,有时需要进行适当变形. (2019·北京高考)设{an}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列. (1)求{an}的通项公式; (2)记{an}的前n项和为Sn,求Sn的最小值. 解 (1)设{an}的公差为d. 因为a1=-10, 所以a2=-10+d,a3=-10+2d,a4=-10+3d. 因为a2+10,a3+8,a4+6成等比数列, 所以(a3+8)2=(a2+10)(a4+6). 所以(-2+2d)2=d(-4+3d). 解得d=2. 所以an=a1+(n-1)d=2n-12. (2)由(1)知,an=2n-12. 则当n≥7时,an>0;当n≤6时,an≤0. 所以Sn的最小值为S5=S6=-30. 热点2 数列的通项与求和 1.求数列通项公式的常见类型及方法 (1)观察法:根据所给的一列数、式、图形等,通过观察法求其通项公式; (2)公式法:利用等差(比)数列的通项公式求an; (3)已知Sn与an的关系, 利用an=求an; (4)累加法:形如an+1=an+f(n)的解析式,可用递推式多项相加法求得an; (5)累乘法:形如an+1=f(n)·an(an≠0)的解析式,可用递推式多项相乘法求得an; (6)倒数法:形如f(anan+1,an,an+1)=0的关系,同乘,先求出,再求出an; (7)构造辅助数列法:通过变换递推关系,将非等差(等比)数列构造为等差(等比)数列来求其通项公式. - 11 - 2.求数列前n项和Sn的常见方法 (1)公式法:利用等差、等比数列的前n项和公式求数列的前n项和; (2)裂项相消法:将数列恒等变形为连续两项或相隔若干项之差的形式,进行消项; (3)错位相减法:求解形如{an·bn}和的前n项和,数列{an},{bn}分别为等差与等比数列; (4)倒序相加法:应用于等差数列或能转化为等差数列的数列求和; (5)分组求和法:数列为等差与等比数列的代数和或奇数项和偶数项的规律不同,根据其表现形式分别求和. 1.(2019·天津高考)设{an}是等差数列,{bn}是等比数列,公比大于0.已知a1=b1=3,b2=a3,b3=4a2+3. (1)求{an}和{bn}的通项公式; (2)设数列{cn}满足cn=求a1c1+a2c2+…+a2nc2n(n∈N*). 解 (1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.依题意,得解得 故an=3+3(n-1)=3n,bn=3×3n-1=3n. 所以,{an}的通项公式为an=3n,{bn}的通项公式为bn=3n. (2)a1c1+a2c2+…+a2nc2n=(a1+a3+a5+…+a2n-1)+(a2b1+a4b2+a6b3+…+a2nbn) =+(6×31+12×32+18×33+…+6n×3n) =3n2+6(1×31+2×32+…+n×3n). 记Tn=1×31+2×32+…+n×3n,① 则3Tn=1×32+2×33+…+n×3n+1,② ②-①得,2Tn=-3-32-33-…-3n+n×3n+1 =-+n×3n+1=. 所以,a1c1+a2c2+…+a2nc2n=3n2+6Tn =3n2+3× =(n∈N*). 2.(2018·天津高考)设{an}是等比数列,公比大于0,其前n项和为Sn(n∈N*),{bn}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6. (1)求{an}和{bn}的通项公式; - 11 - (2)设数列{Sn}的前n项和为Tn(n∈N*), ①求Tn; ②证明 =-2(n∈N*). 解 (1)设等比数列{an}的公比为q. 由a1=1,a3=a2+2. 可得q2-q-2=0.因为q>0,可得q=2,故an=2n-1. 设等差数列{bn}的公差为d,由a4=b3+b5,可得b1+3d=4. 由a5=b4+2b6,可得3b1+13d=16.从而b1=1,d=1,故bn=n. 所以数列{an}的通项公式为an=2n-1,数列{bn}的通项公式为bn=n. (2)①由(1),有Sn==2n-1, 故Tn= (2k-1)=2k-n=-n=2n+1-n-2. ②证明:因为= ==-, 所以 =++…+=-2. 采用错位相减法求和,要注意相减后和式的结构,把项数数清.采用裂项相消法求和,消项时要注意相消的规律,可将数列的前几项和表示出来,归纳出规律. 常用的裂项相消变换有: (1)分式裂项:=; (2)根式裂项:=(-); (3)对数式裂项:lg =lg (n+p)-lg n; (4)指数式裂项:aqn=(qn-qn+1)(q≠0且q≠1). 等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且Sn≤S4. (1)求{an}的通项公式; - 11 - (2)设bn=,求数列{bn}的前n项和Tn. 解 (1)由a1=10,a2为整数,可知等差数列{an}的公差d为整数.又Sn≤S4,故a4≥0,a5≤0,于是10+3d≥0,10+4d≤0,解得-≤d≤-,因此d=-3,故数列{an}的通项公式为an=13-3n. (2)bn==, 于是Tn=b1+b2+…+bn===. 热点3 数列的综合应用 解决数列与函数、不等式的综合问题要注意以下几点: (1)由于数列是一类特殊函数,因此解答数列问题时,多从函数角度入手,准确处理数列问题; (2)利用数列自身特点和自身性质,准确推理,其中注意适时分类讨论; (3)证明不等关系时要充分利用题意恰当使用放缩法. 1.(2017·北京高考)设{an}和{bn}是两个等差数列,记cn=max{b1-a1n,b2-a2n,…,bn-ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数. (1)若an=n,bn=2n-1,求c1,c2,c3的值,并证明{cn}是等差数列; (2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得cm,cm+1,cm+2,…是等差数列. 解 (1)c1=b1-a1=1-1=0, c2=max{b1-2a1,b2-2a2}=max{1-2×1,3-2×2}=-1, c3=max{b1-3a1,b2-3a2,b3-3a3}=max{1-3×1,3-3×2,5-3×3}=-2. 当n≥3时,(bk+1-nak+1)-(bk-nak)=(bk+1-bk)-n(ak+1-ak)=2-n<0, 所以bk-nak关于k∈N*单调递减. 所以cn=max{b1-a1n,b2-a2n,…,bn-ann}=b1-a1n=1-n. 所以对任意n≥1,cn=1-n,于是cn+1-cn=-1, - 11 - 所以{cn}是等差数列. (2)证明:设数列{an}和{bn}的公差分别为d1,d2, 则bk-nak=b1+(k-1)d2-[a1+(k-1)d1]n =b1-a1n+(d2-nd1)(k-1). 所以cn= ①当d1>0时,取正整数m>, 则当n≥m时,nd1>d2, 因此cn=b1-a1n. 此时,cm,cm+1,cm+2,…是等差数列. ②当d1=0时,对任意n≥1, cn=b1-a1n+(n-1)max{d2,0} =b1-a1+(n-1)(max{d2,0}-a1). 此时,c1,c2,c3,…,cn,…是等差数列. ③当d1<0时, 当n>时,有nd1<d2, 所以= =n(-d1)+d1-a1+d2+ ≥n(-d1)+d1-a1+d2-|b1-d2|. 对任意正数M,取正整数 m>max, 故当n≥m时,>M. 2.(2019·江苏高考)定义首项为1且公比为正数的等比数列为“M数列”. (1)已知等比数列{an}(n∈N*)满足:a2a4=a5,a3-4a2+4a1=0,求证:数列{an}为“M数列”; (2)已知数列{bn}(n∈N*)满足:b1=1,=-,其中Sn为数列{bn}的前n项和. ①求数列{bn}的通项公式; ②设m为正整数.若存在“M数列”{cn}(n∈N*),对任意正整数k,当k≤m时,都有ck≤bk≤ck+1成立,求m的最大值. 解 (1)证明:设等比数列{an}的公比为q, 所以a1≠0,q≠0. - 11 - 由得 解得 因此数列{an}为“M数列”. (2)①因为=-,所以bn≠0. 由b1=1,S1=b1,得=-,则b2=2. 由=-,得Sn=. 当n≥2时,由bn=Sn-Sn-1,得 bn=-, 整理得bn+1+bn-1=2bn. 所以数列{bn}是首项和公差均为1的等差数列. 因此,数列{bn}的通项公式为bn=n(n∈N*). ②由①知,bk=k,k∈N*. 因为数列{cn}为“M数列”,设公比为q,所以c1=1,q>0. 因为ck≤bk≤ck+1,所以qk-1≤k≤qk,其中k=1,2,3,…,m(m∈N*). 当k=1时,有q≥1; 当k=2,3,…,m时,有≤ln q≤. 设f(x)=(x>1),则f′(x)=. 令f′(x)=0,得x=e.列表如下: x (1,e) e (e,+∞) f′(x) + 0 - f(x) 极大值 因为=<=, 所以f(k)max=f(3)=. 取q=,当k=1,2,3,4,5时,≤ln q,即k≤qk,经检验知qk-1≤k也成立.因此所求m的最大值不小于5. 若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6. 综上,所求m的最大值为5. - 11 - (1)利用函数的方法研究数列中相关问题时,应准确构造函数,注意函数性质的准确使用; (2)证明不等关系时进行适当的放缩. (2017·江苏高考)对于给定的正整数k,若数列{an}满足:an-k+an-k+1+…+an-1+an+1+…+an+k-1+an+k=2kan,对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”. (1)证明:等差数列{an}是“P(3)数列”; (2)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列. 证明 (1)因为{an}是等差数列,设其公差为d,则 an=a1+(n-1)d, 从而,当n≥4时, an-k+an+k=a1+(n-k-1)d+a1+(n+k-1)d =2a1+2(n-1)d=2an,k=1,2,3, 所以an-3+an-2+an-1+an+1+an+2+an+3=6an, 因此等差数列{an}是“P(3)数列”. (2)数列{an}既是“P(2)数列”,又是“P(3)数列”,因此, 当n≥3时,an-2+an-1+an+1+an+2=4an,① 当n≥4时,an-3+an-2+an-1+an+1+an+2+an+3=6an.② 由①知,an-3+an-2=4an-1-(an+an+1),③ an+2+an+3=4an+1-(an-1+an).④ 将③④代入②,得an-1+an+1=2an,其中n≥4, 所以a3,a4,a5,…是等差数列,设其公差为d′. 在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d′, 在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d′,所以前三项也满足等差数列, 所以数列{an}是等差数列. 专题作业 1.(2018·全国卷Ⅰ)已知数列{an}满足a1=1,nan+1=2(n+1)an,设bn=. (1)求b1,b2,b3; (2)判断数列{bn}是否为等比数列,并说明理由; (3)求{an}的通项公式. - 11 - 解 (1)由条件可得an+1=an. 将n=1代入,得a2=4a1,而a1=1,所以a2=4. 将n=2代入,得a3=3a2,所以a3=12. 从而b1=1,b2=2,b3=4. (2){bn}是首项为1,公比为2的等比数列.由题设条件可得=,即bn+1=2bn,又b1=1,所以{bn}是首项为1,公比为2的等比数列. (3)由(2)可得=2n-1,所以an=n·2n-1. 2.(2017·天津高考)已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4. (1)求{an}和{bn}的通项公式; (2)求数列{a2nbn}的前n项和(n∈N*). 解 (1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由已知b2+b3=12,得b1(q+q2)=12. 而b1=2,所以q2+q-6=0,解得q=-3或q=2. 又因为q>0,所以q=2.所以bn=2n. 由b3=a4-2a1,可得3d-a1=8.① 由S11=11b4,可得a1+5d=16,② 联立①②,解得a1=1,d=3,由此可得an=3n-2. 所以,数列{an}的通项公式为an=3n-2,数列{bn}的通项公式为bn=2n. (2)设数列{a2nbn}的前n项和为Tn. 由a2n=6n-2,得 Tn=4×2+10×22+16×23+…+(6n-2)×2n, 2Tn=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1. 上述两式相减,得 -Tn=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1 =-4-(6n-2)×2n+1 =-(3n-4)2n+2-16, 所以Tn=(3n-4)2n+2+16. 所以,数列{a2nbn}的前n项和为(3n-4)2n+2+16. 3.(2019·全国卷Ⅰ)记Sn为等差数列{an}的前n项和.已知S9=-a5. (1)若a3=4,求{an}的通项公式; (2)若a1>0,求使得Sn≥an的n的取值范围. - 11 - 解 (1)设等差数列{an}的公差为d. 由S9=-a5得a1+4d=0. 由a3=4得a1+2d=4. 于是a1=8,d=-2. 因此等差数列{an}的通项公式为an=10-2n. (2)由(1)得a1=-4d,故an=(n-5)d, Sn=. 由a1>0知d<0,故Sn≥an等价于n2-11n+10≤0,解得1≤n≤10,所以n的取值范围是{n|1≤n≤10,n∈N}. 4.数列An:a1,a2,…,an(n≥2)的各项均为整数,满足:ai≥-1(i=1,2,…,n),且a1·2n-1+a2·2n-2+a3·2n-3+…+an-1·2+an=0,其中a1≠0. (1)若n=3,写出所有满足条件的数列A3; (2)求a1的值; (3)证明:a1+a2+…+an>0. 解 (1)满足条件的数列A3为:-1,-1,6;-1,0,4;-1,1,2;-1,2,0. (2)假设a1≠-1,因为a1≠0,所以a1≥1. 又a2,a3,…,an≥-1,因此有 a1·2n-1+a2·2n-2+a3·2n-3+…+an-1·2+an ≥2n-1+(-1)·2n-2+(-1)·2n-3+…+(-1)·2+(-1)=2n-1-2n-2-2n-3-…-2-1=1, 这与a1·2n-1+a2·2n-2+a3·2n-3+…+an-1·2+an=0矛盾! 所以a1=-1. (3)先证明如下结论:∀k∈{1,2,…,n-1}, 必有a1·2n-1+a2·2n-2+…+ak·2n-k≤0. 否则,令a1·2n-1+a2·2n-2+…+ak·2n-k>0, 注意到左式是2n-k的整数倍, 因此a1·2n-1+a2·2n-2+…+ak·2n-k≥2n-k. 所以有 a1·2n-1+a2·2n-2+a3·2n-3+…+an-1·2+an ≥2n-k+(-1)·2n-k-1+(-1)·2n-k-2+…+(-1)·2+(-1) =2n-k-2n-k-1-2n-k-2-…-2-1=1, 这与a1·2n-1+a2·2n-2+a3·2n-3+…+an-1·2+an=0矛盾! 所以a1·2n-1+a2·2n-2+…+ak·2n-k≤0. - 11 - 因此有 a1<0, a1·2+a2≤0, a1·4+a2·2+a3≤0, … a1·2k-1+a2·2k-2+…+ak-1·2+ak≤0, … a1·2n-2+a2·2n-3+…+an-2·2+an-1≤0. 将上述n-1个不等式相加得a1·(2n-1-1)+a2·(2n-2-1)+…+an-1·(2-1)<0,① 又a1·2n-1+a2·2n-2+a3·2n-3+…+an-1·2+an=0,② 两式相减即得a1+a2+…+an>0. - 11 -查看更多