【数学】2018届一轮复习人教A版不等式的证明教案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2018届一轮复习人教A版不等式的证明教案

第二节 不等式的证明 ‎————————————————————————————————‎ ‎[考纲传真] 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.‎ ‎1.基本不等式 定理1:设a,b∈R,则a2+b2≥2ab,当且仅当a=b时,等号成立.‎ 定理2:如果a,b为正数,则≥,当且仅当a=b时,等号成立.‎ 定理3:如果a,b,c为正数,则≥,当且仅当a=b=c时,等号成立.‎ 定理4:(一般形式的算术—几何平均不等式)如果a1,a2,…,an为n个正数,则≥,当且仅当a1=a2=…=an时,等号成立.‎ ‎2.不等式证明的方法 ‎(1)比较法是证明不等式最基本的方法,可分为作差比较法和作商比较法两种.‎ 名称 作差比较法 作商比较法 理论依据 a>b⇔a-b>0 ‎ a<b⇔a-b<0‎ a=b⇔a-b=0‎ b>0,>1⇒a>b ‎ b<0,>1⇒a<b ‎(2)综合法与分析法 ‎①综合法:利用某些已经证明过的不等式和不等式的性质,推导出所要证明的不等式,这种方法叫综合法.即“由因导果”的方法.‎ ‎②分析法:从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已经具备,那么就可以判定原不等式成立,这种方法叫作分析法.即“执果索因”的方法.‎ ‎1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)‎ ‎(1)比较法最终要判断式子的符号得出结论.(  )‎ ‎(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.(  )‎ ‎(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.(  )‎ ‎(4)使用反证法时,“反设”不能作为推理的条件应用.(  )‎ ‎[答案] (1)× (2)√ (3)× (4)×‎ ‎2.(教材改编)若a>b>1,x=a+,y=b+,则x与y的大小关系是(  )‎ A.x>y B.x<y C.x≥y D.x≤y A [x-y=a+- ‎=a-b+=.‎ 由a>b>1得ab>1,a-b>0,‎ 所以>0,即x-y>0,所以x>y.]‎ ‎3.(教材改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.‎ M≥N [2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).‎ 因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,‎ 从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.]‎ ‎4.已知a>0,b>0且ln(a+b)=0,则+的最小值是________.‎ ‎4 [由题意得,a+b=1,a>0,b>0,‎ ‎∴+=(a+b)=2++ ‎≥2+2=4,‎ 当且仅当a=b=时等号成立.]‎ ‎5.已知x>0,y>0,证明:(1+x+y2)(1+x2+y)≥9xy.‎ ‎[证明] 因为x>0,y>0,‎ 所以1+x+y2≥3>0,1+x2+y≥3>0,8分 故(1+x+y2)(1+x2+y)≥3·3=9xy.10分 比较法证明不等式 ‎ 已知a>0,b>0,求证:+≥+.‎ ‎[证明] 法一:-(+)‎ ‎=+=+ ‎==≥0,‎ ‎∴+≥+.10分 法二:由于= ‎==-1≥-1=1.8分 又a>0,b>0,>0,∴+≥+.10分 ‎[规律方法] 1.在法一中,采用局部通分,优化了解题过程;在法二中,利用不等式的性质,把证明a>b转化为证明>1(b>0).‎ ‎2.作差(商)证明不等式,关键是对差(商)式进行合理的变形,特别注意作商证明不等式,不等式的两边应同号.‎ 提醒:在使用作商比较法时,要注意说明分母的符号.‎ ‎[变式训练1] (2017·莆田模拟)设a,b是非负实数,‎ 求证:a2+b2≥(a+b). 【导学号:31222447】‎ ‎[证明] 因为a2+b2-(a+b)‎ ‎=(a2-a)+(b2-b)‎ ‎=a(-)+b(-)‎ ‎=(-)(a-b)‎ ‎=.6分 因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a-b与同号,所以(a-b)≥0,‎ 所以a2+b2≥(a+b).10分 综合法证明不等式 ‎ 设a,b,c均为正数,且a+b+c=1,证明:‎ ‎ 【导学号:31222448】‎ ‎(1)ab+bc+ac≤;‎ ‎(2)++≥1.‎ ‎[证明] (1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,‎ 得a2+b2+c2≥ab+bc+ca,‎ 由题设得(a+b+c)2=1,‎ 即a2+b2+c2+2ab+2bc+2ca=1,‎ 所以3(ab+bc+ca)≤1,即ab+bc+ca≤.5分 ‎(2)因为+b≥2a,+c≥2b,+a≥2c,‎ 故+++(a+b+c)≥2(a+b+c),‎ 则++≥a+b+c,所以++≥1.10分 ‎[规律方法] 1.综合法证明的实质是由因导果,其证明的逻辑关系是:A⇒B1⇒B2⇒…⇒Bn⇒B(A为已知条件或数学定义、定理、公理,B为要证结论),它的常见书面表达式是“∵,∴”或“⇒”.‎ ‎2.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.‎ ‎[变式训练2] (2017·石家庄调研)已知函数f(x)=2|x+1|+|x-2|.‎ ‎(1)求f(x)的最小值m;‎ ‎(2)若a,b,c均为正实数,且满足a+b+c=m,求证:++≥3.‎ ‎[解] (1)当x<-1时,f(x)=-2(x+1)-(x-2)=-3x>3;2分 当-1≤x<2时,f(x)=2(x+1)-(x-2)=x+4∈[3,6);‎ 当x≥2时,f(x)=2(x+1)+(x-2)=3x≥6.‎ 综上,f(x)的最小值m=3.5分 ‎(2)证明:a,b,c均为正实数,且满足a+b+c=3,‎ 因为+++(a+b+c)‎ ‎=++ ‎≥2=2(a+b+c).8分 ‎(当且仅当a=b=c=1时取“=”)‎ 所以++≥a+b+c,即++≥3.10分 分析法证明不等式 ‎ (2015·全国卷Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:‎ ‎(1)若ab>cd,则+>+;‎ ‎(2)+>+是|a-b|<|c-d|的充要条件.‎ ‎[证明] (1)∵a,b,c,d为正数,且a+b=c+d,‎ 欲证+>+,‎ 只需证明(+)2>(+)2,‎ 也就是证明a+b+2>c+d+2,‎ 只需证明>,即证ab>cd.‎ 由于ab>cd,‎ 因此+>+.5分 ‎(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,‎ 即(a+b)2-4ab<(c+d)2-4cd.‎ 因为a+b=c+d,所以ab>cd.‎ 由(1),得+>+.8分 ‎②若+>+,则(+)2>(+)2,‎ 即a+b+2>c+d+2.‎ 因为a+b=c+d,所以ab>cd.‎ 于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.‎ 因此|a-b|<|c-d|.‎ 综上,+>+是|a-b|<|c-d|的充要条件.10分 ‎[规律方法] 1.本题将不等式证明与充要条件的判定渗透命题,考查推理论证能力和转化与化归的思想方法,由于两个不等式两边都是正数,可通过两边平方来证明.‎ ‎2.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.‎ ‎3.分析法证明的思路是“执果索因”,其框图表示为:‎ →→→…→ ‎[变式训练3] 已知a>b>c,且a+b+c=0,求证:<a.‎ ‎[证明] 要证<a,只需证b2-ac<3a2.‎ ‎∵a+b+c=0,只需证b2+a(a+b)<3a2,‎ 只需证2a2-ab-b2>0,4分 只需证(a-b)(2a+b)>0,‎ 只需证(a-b)(a-c)>0.‎ ‎∵a>b>c,∴a-b>0,a-c>0,‎ ‎∴(a-b)(a-c)>0显然成立,‎ 故原不等式成立.10分 ‎[思想与方法]‎ ‎1.比较法:作差比较法主要判断差值与0的大小,作商比较法关键在于判定商值与1的大小(一般要求分母大于0).‎ ‎2.分析法:B⇐B1⇐B2⇐…⇐Bn⇐A(结论).‎ ‎(步步寻求不等式成立的充分条件)(已知).‎ ‎3.综合法:A⇒B1⇒B2⇒…⇒Bn⇒B(已知).‎ ‎(逐步推演不等式成立的必要条件)(结论).‎ ‎[易错与防范]‎ ‎1.使用平均值不等式时易忽视等号成立的条件.‎ ‎2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)…”“即要证…”“就要证…”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.‎ 课时分层训练(七十) 不等式的证明 ‎1.已知定义在R上的函数f(x)=|x+1|+|x-2|的最小值为a.‎ ‎(1)求a的值;‎ ‎(2)若p,q,r是正实数,且满足p+q+r=a,求证:p2+q2+r2≥3.‎ ‎[解] (1)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,‎ 当且仅当-1≤x≤2时,等号成立,‎ 所以f(x)的最小值等于3,即a=3.4分 ‎(2)证明:法一:由(1)知p+q+r=3,且p,q,r大于0,‎ ‎∴(p+q+r)2=9.‎ 又易知p2+q2+r2≥pq+pr+qr.8分 故9=(p+q+r)2=p2+q2+r2+2pq+2pr+2qr≤3(p2+q2+r2),‎ 因此,p2+q2+r2≥3.10分 法二:由(1)知p+q+r=3,又因为p,q,r是正实数,‎ 所以(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r)2=9,‎ 故p2+q2+r2≥3.10分 ‎2.(2015·湖南高考)设a>0,b>0,且a+b=+.证明:‎ ‎(1)a+b≥2;‎ ‎(2)a2+a<2与b2+b<2不可能同时成立.‎ ‎[证明] 由a+b=+=,a>0,b>0,得ab=1.2分 ‎(1)由基本不等式及ab=1,有a+b≥2=2,即a+b≥2.5分 ‎(2)假设a2+a<2与b2+b<2同时成立,则由a2+a<2及a>0,得00,b>0,且+=.‎ ‎(1)求a3+b3的最小值;‎ ‎(2)是否存在a,b,使得2a+3b=6?并说明理由.‎ ‎[解] (1)由=+≥,得ab≥2,当且仅当a=b=时等号成立.2分 故a3+b3≥2≥4,当且仅当a=b=时等号成立.‎ 所以a3+b3的最小值为4.5分 ‎(2)由(1)知,2a+3b≥2·≥4.‎ 由于4>6,从而不存在a,b,使得2a+3b=6.10分 ‎4.(2017·石家庄模拟)已知函数f(x)=|x|+|x-1|.‎ ‎(1)若f(x)≥|m-1|恒成立,求实数m的最大值M;‎ ‎(2)在(1)成立的条件下,正实数a,b满足a2+b2=M,证明:a+b≥2ab. ‎ ‎【导学号:31222449】‎ ‎[解] (1)∵f(x)=|x|+|x-1|≥|x-(x-1)|=1,‎ 当且仅当0≤x≤1时取等号,‎ ‎∴f(x)=|x|+|x-1|的最小值为1.3分 要使f(x)≥|m-1|恒成立,只需|m-1|≤1,‎ ‎∴0≤m≤2,则m的最大值M=2.5分 ‎(2)证明:由(1)知,a2+b2=2,‎ 由a2+b2≥2ab,知ab≤1.①‎ 又a+b≥2,则(a+b)≥2ab.8分 由①知,≤1.‎ 故a+b≥2ab.10分 ‎5.已知函数f(x)=k-|x-3|,k∈R,且f(x+3)≥0的解集为[-1,1].‎ ‎(1)求k的值;‎ ‎(2)若a,b,c是正实数,且++=1.‎ 求证:a+2b+3c≥9. 【导学号:31222450】‎ ‎[解] (1)因为f(x)=k-|x-3|,‎ 所以f(x+3)≥0等价于|x|≤k,2分 由|x|≤k有解,得k≥0,且解集为[-k,k].‎ 因为f(x+3)≥0的解集为[-1,1].‎ 因此k=1.5分 ‎(2)证明:由(1)知++=1,因为a,b,c为正实数.‎ 所以a+2b+3c=(a+2b+3c) ‎=3+++ ‎≥3+2+2+2=9.8分 当且仅当a=2b=3c时等号成立.‎ 因此a+2b+3c≥9.10分 ‎6.(2017·福州质检)已知函数f(x)=|x+1|.‎ ‎(1)求不等式f(x)<|2x+1|-1的解集M;‎ ‎(2)设a,b∈M,证明:f(ab)>f(a)-f(-b).‎ ‎[解] (1)①当x≤-1时,原不等式可化为-x-1<-2x-2,解得x<-1;2分 ‎②当-1<x<-时,原不等式可化为x+1<-2x-2,解得x<-1,此时原不等式无解;‎ ‎③当x≥-时,原不等式可化为x+1<2x,解得x>1.‎ 综上,M={x|x<-1或x>1}.5分 ‎(2)证明:因为f(a)-f(-b)=|a+1|-|-b+1|≤|a+1-(-b+1)|=|a+b|,6分 所以,要证f(ab)>f(a)-f(-b),只需证|ab+1|>|a+b|,‎ 即证|ab+1|2>|a+b|2,‎ 即证a2b2+2ab+1>a2+2ab+b2,8分 即证a2b2-a2-b2+1>0,即证(a2-1)(b2-1)>0.‎ 因为a,b∈M,所以a2>1,b2>1,所以(a2-1)(b2-1)>0成立,‎ 所以原不等式成立.10分
查看更多

相关文章

您可能关注的文档