【数学】2020届一轮复习人教B版12-8 离散型随机变量及其分布列学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2020届一轮复习人教B版12-8 离散型随机变量及其分布列学案

‎12.8 离散型随机变量及其分布列 典例精析 题型一 离散型随机变量的分布列 ‎【例1】设离散型随机变量X的分布列为 X ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ P ‎0.2‎ ‎0.1‎ ‎0.1‎ ‎0.3‎ ‎0.3‎ 求:(1)2X+1的分布列;(2)|X-1|的分布列.‎ ‎【解析】首先列表如下:‎ X ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎2X+1‎ ‎1‎ ‎3‎ ‎5‎ ‎7‎ ‎9‎ ‎|X-1|‎ ‎1‎ ‎0‎ ‎1‎ ‎2‎ ‎3‎ 从而由上表得两个分布列如下:‎ ‎2X+1的分布列:‎ ‎2X+1‎ ‎1‎ ‎3‎ ‎5‎ ‎7‎ ‎9‎ P ‎0.2‎ ‎0.1‎ ‎0.1‎ ‎0.3‎ ‎0.3‎ ‎|X-1|的分布列:‎ ‎|X-1|‎ ‎0‎ ‎1‎ ‎2‎ ‎3‎ P ‎0.1‎ ‎0.3‎ ‎0.3‎ ‎0.3‎ ‎【点拨】由于X的不同的值,Y=f(X)会取到相同的值,这时要考虑所有使f(X)=Y成立的X1,X2,…,Xi的值,则P (Y)=P(f(X))=P(X1)+P(X2)+…+P(Xi),在第(2)小题中充分体现了这一点.‎ ‎【变式训练1】 某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过渡区,B肯定是受A感染的,对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是,同样也假定D受A、B、C感染的概率都为,在这种假定之下,B、C、D中受A感染的人数X就是一个随机变量,写出X分布列,并求均值.‎ ‎【解析】依题知X可取1、2、3,‎ P(X=1)=1×(1-)×(1-)=,‎ P(X=2)=1×(1-)×+1××(1-)=,‎ P(X=3)=1××=,‎ 所以X的分布列为 X ‎1‎ ‎2‎ ‎3‎ P 均值E(X)=1×+2×+3×=.‎ 题型二 两点分布 ‎【例2】在掷一枚图钉的随机试验中,令ξ=如果针尖向上的概率为p,试写出随机变量ξ的分布列.‎ ‎【解析】根据分布列的性质,针尖向下的概率是1-p.于是,随机变量的分布列是 ξ ‎0‎ ‎1‎ P ‎1-p p ‎【点拨】本题将两点分布与概率分布列的性质相结合,加深了两点分布的概念的理解.‎ ‎【变式训练2】 若离散型随机变量ξ=的分布列为:‎ ξ ‎0‎ ‎1‎ P ‎9c‎2-c ‎3-‎‎8c ‎(1)求出c;‎ ‎(2)ξ是否服从两点分布?若是,成功概率是多少?‎ ‎【解析】(1)由(‎9c2-c)+(3-‎8c)=1,解得c=或.‎ 又‎9c2-c≥0,3-‎8c≥0,所以c=.‎ ‎(2)是两点分布.成功概率为3-‎8c=.‎ 题型三 超几何分布 ‎【例3】 有10件产品,其中3件次品,7件正品,现从中抽取5件,求抽得次品数 X 的分布列.‎ ‎【解析】X的所有可能取值为 0,1,2,3,X=0表示取出的5件产品全是正品,‎ P(X=0)===;‎ X=1表示取出的5件产品有1件次品4件正品,‎ P(X=1)===;‎ X=2表示取出的5件产品有2件次品3件正品,‎ P(X=2)===;‎ X=3表示取出的5件产品有3件次品2件正品,‎ P(X=3)===.‎ 所以X的分布列为 X ‎0‎ ‎1‎ ‎2‎ ‎3‎ P ‎【点拨】在取出的5件产品中,次品数X服从超几何分布,只要代入公式就可求出相应的概率,关键是明确随机变量的所有取值.超几何分布是一个重要分布,要掌握它的特点.‎ ‎【变式训练3】一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(X),则P(X=4)的值为(  )‎ A.     B. C. D. ‎【解析】由题意取出的3个球必为2个旧球1个新球,故P(X=4)==.选C.‎ 总结提高 ‎1.求离散型随机变量分布列的问题,需要综合运用排列、组合、概率等知识和方法.‎ ‎2.求离散型随机变量ξ的分布列的步骤:‎ ‎(1)求出随机变量ξ的所有可能取值xi(i=1,2,3,…);‎ ‎(2)求出各取值的概率P(ξ=xi)=pi;‎ ‎(3)列出表格. ‎
查看更多

相关文章

您可能关注的文档