【数学】2019届一轮复习人教A版(文)第九章第一节随机事件的概率学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2019届一轮复习人教A版(文)第九章第一节随机事件的概率学案

第一节随机事件的概率 ‎1.事件的相关概念 ‎2.频数、频率和概率 ‎(1)频数、频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.‎ ‎(2)概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率.‎ ‎3.事件的关系与运算 名称 条件 结论 符号表示 包含关系 A发生⇒B发生 事件B包含事件A(事件A包含于事件B)‎ B⊇A(或A⊆B)‎ 相等关系 若B⊇A且A⊇B 事件A与事件B相等 A=B 并(和)事件 A发生或B发生 事件A与事件B的并事件(或和事件)‎ A∪B(或A+B)‎ 交(积)事件 A发生且B发生 事件A与事件B的交事件(或积事件)‎ A∩B(或AB)‎ 互斥事件 A∩B为不可能事件 事件A与事件B互斥 A∩B=∅‎ 对立事件 A∩B为不可能事件,A∪B 事件A与事件B互为对立事件 A∩B=∅,P(A∪B)=1‎ 为必然事件 ‎4.概率的几个基本性质 ‎(1)概率的取值范围:0≤P(A)≤1.‎ ‎(2)必然事件的概率为.‎ ‎(3)不可能事件的概率为.‎ ‎(4)概率的加法公式:如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).‎ ‎(5)对立事件的概率:若事件A与事件B互为对立事件,则A∪B为必然事件,P(A∪B)=,P(A)=1-P(B).‎ ‎1.判断下列结论是否正确(请在括号中打“√”或“×”)‎ ‎(1)“方程x2+2x+8=0有两个实根”是不可能事件.(  )‎ ‎(2)对立事件一定是互斥事件,互斥事件也一定是对立事件.(  )‎ ‎(3)事件发生的频率与概率是相同的.(  )‎ ‎(4)若事件A发生的概率为P(A),则00,y>0,+=1.则x+y=(x+y)·=5+≥5+2 =9,当且仅当x=2y时等号成立,故x+y的最小值为9.‎ 答案:9‎ ‎6.(2018·湖北七市联考)某电子商务公司随机抽取1 000名网络购物者进行调查.这1 000名购物者2017年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为:[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:‎ 电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:‎ 购物金额分组 ‎[0.3,0.5)‎ ‎[0.5,0.6)‎ ‎[0.6,0.8)‎ ‎[0.8,0.9]‎ 发放金额 ‎50‎ ‎100‎ ‎150‎ ‎200‎ ‎(1)求这1 000名购物者获得优惠券金额的平均数;‎ ‎(2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.‎ 解:(1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:‎ x ‎0.3≤x<0.5‎ ‎0.5≤x<0.6‎ ‎0.6≤x<0.8‎ ‎0.8≤x≤0.9‎ y ‎50‎ ‎100‎ ‎150‎ ‎200‎ 频率 ‎0.4‎ ‎0.3‎ ‎0.28‎ ‎0.02‎ 这1 000名购物者获得优惠券金额的平均数为 (50×400+100×300+150×280+200×20)=96.‎ ‎(2)由获得优惠券金额y与购物金额x的对应关系及(1)知 P(y=150)=P(0.6≤x<0.8)=0.28,‎ P(y=200)=P(0.8≤x≤0.9)=0.02,‎ 从而,获得优惠券金额不少于150元的概率为P(y≥150)=P(y=150)+P(y=200)=0.28+0.02=0.3.‎ ‎7.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.‎ 商品 顾客人数   ‎ 甲 乙 丙 丁 ‎100‎ ‎√‎ ‎×‎ ‎√‎ ‎√‎ ‎217‎ ‎×‎ ‎√‎ ‎×‎ ‎√‎ ‎200‎ ‎√‎ ‎√‎ ‎√‎ ‎×‎ ‎300‎ ‎√‎ ‎×‎ ‎√‎ ‎×‎ ‎85‎ ‎√‎ ‎×‎ ‎×‎ ‎×‎ ‎98‎ ‎×‎ ‎√‎ ‎×‎ ‎×‎ ‎(1)估计顾客同时购买乙和丙的概率;‎ ‎(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;‎ ‎(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?‎ 解:(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为=0.2.‎ ‎(2)从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2‎ 种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为=0.3.‎ ‎(3)与(1)同理,可得:‎ 顾客同时购买甲和乙的概率可以估计为=0.2,‎ 顾客同时购买甲和丙的概率可以估计为=0.6,‎ 顾客同时购买甲和丁的概率可以估计为=0.1.‎ 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.‎ C级——重难题目自主选做 如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到火车站的人进行调查,调查结果如下:‎ 所用时间(分钟)‎ ‎10~20‎ ‎20~30‎ ‎30~40‎ ‎40~50‎ ‎50~60‎ 选择L1的人数 ‎6‎ ‎12‎ ‎18‎ ‎12‎ ‎12‎ 选择L2的人数 ‎0‎ ‎4‎ ‎16‎ ‎16‎ ‎4‎ ‎(1)试估计40分钟内不能赶到火车站的概率;‎ ‎(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;‎ ‎(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.‎ 解:(1)共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),‎ 用频率估计概率,可得所求概率为0.44.‎ ‎(2)选择L1的有60人,选择L2的有40人,故由调查结果得所求各频率为 所用时间(分钟)‎ ‎10~20‎ ‎20~30‎ ‎30~40‎ ‎40~50‎ ‎50~60‎ L1的频率 ‎0.1‎ ‎0.2‎ ‎0.3‎ ‎0.2‎ ‎0.2‎ L2的频率 ‎0‎ ‎0.1‎ ‎0.4‎ ‎0.4‎ ‎0.1‎ ‎(3)记事件A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;‎ 记事件B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.‎ 由(2)知P(A1)=0.1+0.2+0.3=0.6,‎ P(A2)=0.1+0.4=0.5,P(A1)>P(A2),故甲应选择L1;‎ P(B1)=0.1+0.2+0.3+0.2=0.8,‎ P(B2)=0.1+0.4+0.4=0.9,‎ P(B2)>P(B1),故乙应选择L2.‎ ‎(二)重点高中适用作业 A级——保分题目巧做快做 ‎1.一个盒子内装有红球、白球、黑球三种球,其数量分别为3,2,1,从中任取两球,则互斥而不对立的两个事件为(  )‎ A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球 C.恰有一个白球;一个白球一个黑球 D.至少有一个白球;红球、黑球各一个 解析:选D 红球、黑球各取一个,则一定取不到白球,故“至少有一个白球”“红球、黑球各一个”为互斥事件,又任取两球还包含“两个红球”这个事件,故不是对立事件.‎ ‎2.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一个产品是正品(甲级)的概率为(  )‎ A.0.95          B.0.97‎ C.0.92 D.0.08‎ 解析:选C 记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而所求概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%=0.92.‎ ‎3.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为(  )‎ A.134石 B.169石 C.338石 D.1 365石 解析:选B 这批米内夹谷约为×1 534≈169石,故选B.‎ ‎4.甲、乙两人下棋,和棋的概率为,乙获胜的概率为,则下列说法正确的是(  )‎ A.甲获胜的概率是 B.甲不输的概率是 C.乙输了的概率是 D.乙不输的概率是 解析:选A “甲获胜”是“和棋或乙获胜”的对立事件,所以“甲获胜”的概率是P=1--=,故A正确;“乙输了”等于“甲获胜”,其概率为,故C不正确;设事件A为“甲不输”,则A是“甲胜”、“和棋”这两个互斥事件的并事件,所以P(A)=+=或设事件A为“甲不输”,则A是“乙获胜”的对立事件,所以P(A)=1-=,故B不正确;同理,“乙不输”的概率为,故D不正确.‎ ‎5.掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+发生的概率为(  )‎ A. B. C. D. 解析:选C 掷一个骰子的试验有6种可能结果,依题意P(A)==,P(B)==,‎ 所以P()=1-P(B)=1-=,‎ 因为表示“出现5点或6点”的事件,因此事件A与互斥,从而P(A+)=P(A)+P()=+=.‎ ‎6.若A,B为互斥事件,P(A)=0.4,P(A∪B)=0.7,则P(B)=________.‎ 解析:∵A,B为互斥事件,‎ ‎∴P(A∪B)=P(A)+P(B),‎ ‎∴P(B)=P(A∪B)-P(A)=0.7-0.4=0.3.‎ 答案:0.3‎ ‎7.“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象.某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9 600人,则可估计该地区对“键盘侠”持反对态度的有________人.‎ 解析:在随机抽取的50人中,持反对态度的频率为1-=,则可估计该地区对“键盘侠”持反对态度的有9 600×=6 912(人).‎ 答案:6 912‎ ‎8.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为,取得两个绿球的概率为,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.‎ 解析:由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P=+=.‎ 由于事件A“至少取得一个红球”与事件B“取得两个绿球”是对立事件,则至少取得一个红球的概率为 P(A)=1-P(B)=1-=.‎ 答案:  ‎9.(2018·湖北七市联考)某电子商务公司随机抽取1 000名网络购物者进行调查.这1 000名购物者2017年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为:[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:‎ 电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:‎ 购物金额分组 ‎[0.3,0.5)‎ ‎[0.5,0.6)‎ ‎[0.6,0.8)‎ ‎[0.8,0.9]‎ 发放金额 ‎50‎ ‎100‎ ‎150‎ ‎200‎ ‎(1)求这1 000名购物者获得优惠券金额的平均数;‎ ‎(2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.‎ 解:(1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:‎ x ‎0.3≤x<0.5‎ ‎0.5≤x<0.6‎ ‎0.6≤x<0.8‎ ‎0.8≤x≤0.9‎ y ‎50‎ ‎100‎ ‎150‎ ‎200‎ 频率 ‎0.4‎ ‎0.3‎ ‎0.28‎ ‎0.02‎ 这1 000名购物者获得优惠券金额的平均数为 (50×400+100×300+150×280+200×20)=96.‎ ‎(2)由获得优惠券金额y与购物金额x的对应关系及(1)知 P(y=150)=P(0.6≤x<0.8)=0.28,‎ P(y=200)=P(0.8≤x≤0.9)=0.02,‎ 从而,获得优惠券金额不少于150元的概率为P(y≥150)=P(y=150)+P(y=200)=0.28+0.02=0.3.‎ ‎10.某保险公司利用简单随机抽样的方法,对投保的车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:‎ 赔偿金额(元)‎ ‎0‎ ‎1 000‎ ‎2 000‎ ‎3 000‎ ‎4 000‎ 车辆数(辆)‎ ‎500‎ ‎130‎ ‎100‎ ‎150‎ ‎120‎ ‎(1)若每辆车的投保金额为2 800元,估计赔付金额大于投保金额的概率.‎ ‎(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.‎ 解:(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)==0.15,P(B)==0.12,‎ 由于投保额为2 800元,赔付金额大于投保金额的情形是赔付3 000元和4 000元,‎ 所以其概率为P(A)+P(B)=0.15+0.12=0.27.‎ ‎(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主是新司机的有0.1×1 000=100(位),而赔付金额为4 000元的车辆中车主为新司机的有0.2×120=24(位),‎ 所以样本车辆中新司机车主获赔金额为4 000元的频率为=0.24,‎ 由频率估计概率得P(C)=0.24.‎ B级——拔高题目稳做准做 ‎1.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别为0.2,0.2,0.3,0.3,则下列说法正确的是(  )‎ A.A∪B与C是互斥事件,也是对立事件 B.B∪C与D是互斥事件,也是对立事件 C.A∪C与B∪D是互斥事件,但不是对立事件 D.A与B∪C∪D是互斥事件,也是对立事件 解析:选D 由于A,B,C,D彼此互斥,且A∪B∪C∪D是一个必然事件,故其事件的关系可由如图所示的Venn图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.‎ ‎2.由经验得知,在人民商场付款处排队等候付款的人数及其概率如下:‎ 排除人数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5人及以上 概率 ‎0.11‎ ‎0.16‎ ‎0.3‎ ‎0.29‎ ‎0.1‎ ‎0.04‎ 则至多2人排队的概率为(  )‎ A.0.3 B.0.43‎ C.0.57 D.0.27‎ 解析:选C 记“没有人排队”为事件A,“1人排队”为事件B,“2人排队”为事件C,A,B,C彼此互斥.记“至多2人排队”为事件E.则P(E)=P(A+B+C)=P(A)+P(B)+P(C)=0.11+0.16+0.3=0.57.‎ ‎3.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=‎4a-5,则实数a的取值范围是(  )‎ A. B. ‎ C. D. 解析:选D 由题意可得 即解得0,y>0,+=1.则x+y=(x+y)·=5+≥5+2 =9,当且仅当x=2y时等号成立,故x+y的最小值为9.‎ 答案:9‎ ‎5.如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到火车站的人进行调查,调查结果如下:‎ 所用时间(分钟)‎ ‎10~20‎ ‎20~30‎ ‎30~40‎ ‎40~50‎ ‎50~60‎ 选择L1的人数 ‎6‎ ‎12‎ ‎18‎ ‎12‎ ‎12‎ 选择L2的人数 ‎0‎ ‎4‎ ‎16‎ ‎16‎ ‎4‎ ‎(1)试估计40分钟内不能赶到火车站的概率;‎ ‎(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;‎ ‎(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.‎ 解:(1)共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),‎ 用频率估计概率,可得所求概率为0.44.‎ ‎(2)选择L1的有60人,选择L2的有40人,故由调查结果得所求各频率为 所用时间(分钟)‎ ‎10~‎ ‎20~‎ ‎30~‎ ‎40~‎ ‎50~‎ ‎20‎ ‎30‎ ‎40‎ ‎50‎ ‎60‎ L1的频率 ‎0.1‎ ‎0.2‎ ‎0.3‎ ‎0.2‎ ‎0.2‎ L2的频率 ‎0‎ ‎0.1‎ ‎0.4‎ ‎0.4‎ ‎0.1‎ ‎(3)记事件A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;‎ 记事件B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.‎ 由(2)知P(A1)=0.1+0.2+0.3=0.6,‎ P(A2)=0.1+0.4=0.5,P(A1)>P(A2),故甲应选择L1;‎ P(B1)=0.1+0.2+0.3+0.2=0.8,‎ P(B2)=0.1+0.4+0.4=0.9,‎ P(B2)>P(B1),故乙应选择L2.‎ ‎6.某人在如图所示的直角边长为‎4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量 Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:‎ X ‎1‎ ‎2‎ ‎3‎ ‎4‎ Y ‎51‎ ‎48‎ ‎45‎ ‎42‎ ‎ 这里,两株作物“相近”是指它们之间的直线距离不超过‎1米.‎ ‎(1)完成下表,并求所种作物的平均年收获量;‎ Y ‎51‎ ‎48‎ ‎45‎ ‎42‎ 频数 ‎4‎ ‎(2)在所种作物中随机选取一株,求它的年收获量至少为‎48 kg的概率.‎ 解:(1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株.列表如下:‎ Y ‎51‎ ‎48‎ ‎45‎ ‎42‎ 频数 ‎2‎ ‎4‎ ‎6‎ ‎3‎ 所种作物的平均年收获量为 ‎===46.‎ ‎(2)由(1)知,P(Y=51)=,P(Y=48)=.‎ 故在所种作物中随机选取一株,它的年收获量至少为‎48 kg的概率为P(Y≥48)=P(Y=51)+P(Y=48)=+=.‎
查看更多

相关文章

您可能关注的文档