专题12 立体几何中的向量方法(高考押题)-2017年高考数学(文)考纲解读与热点难点突破

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

专题12 立体几何中的向量方法(高考押题)-2017年高考数学(文)考纲解读与热点难点突破

‎1.已知向量a=(1,0,-1),则下列向量中与a成60°夹角的是(  )‎ A.(-1,1,0)    B.(1,-1,0)‎ C.(0,-1,1) D.(-1,0,1)‎ ‎【答案】:B ‎【解析】:经检验,选项B中向量(1,-1,0)与向量a=(1,0,-1)的夹角的余弦值为,即它们的夹角为60°.‎ ‎2.如图,在空间直角坐标系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为(  )‎ A. B. C. D. ‎【答案】:A ‎ ‎ ‎3.已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于(  )‎ A.    B.    C.    D. ‎【答案】:A ‎【解析】:如图所示建立空间直角坐标系,设正三棱柱的棱长为2,O(0,0,0),B(,0,0),A(0,-1,0),B1(,0,2),则=(,1,2),则=(-,0,0)为侧面ACC1A1的法向量,‎ 由sin θ==. ‎ ‎4.如图所示,正方体ABCD-A1B1C1D1的棱长为a,M、N分别为A1B和AC上的点,A1M=AN=a,则MN与平面BB1C1C的位置关系是(  )‎ A.垂直 B.平行 C.相交 D.不能确定 ‎【答案】:B ‎ ‎ ‎5.已知二面角α-l-β等于120°,A,B是棱l上两点,AC,BD分别在半平面α,β内,AC⊥l,BD⊥l,且AB=AC=BD=1,则CD的长等于 (  )‎ A. B. C.2 D. ‎【答案】:C ‎【解析】:法一:依题意可知,二面角α-l-β的大小等于与所成的角,∵=++,∴2=2+2+2+2·+2·+2·,‎ ‎∵AC⊥AB,BD⊥AB,AB=AC=BD=1,‎ ‎∴2=1+1+1+2·=3+2||·||cos〈,〉=3+2cos〈,〉,‎ ‎∵〈,〉=120°,∴〈,〉=60°,‎ 因此2=3+2×=4,∴||=2.‎ 法二:在β内作AE綊BD.连CE、DE,易知∠CAE=120°,CE⊥DE,∴CE2=AC2+AE2-2×AC×AEcos 120°=3.在Rt△CED中,CD2=CE2+ED2=4,∴CD=2. ‎ ‎6.在正方体ABCD-A1B1C1D1中,M,N分别为棱AA1和BB1的中点,则sin〈,〉的值为(  )‎ A. B. C. D. ‎【答案】 B ‎ 7.设正方体ABCDA1B1C1D1的棱长为2,则点D1到平面A1BD的距离是(  )‎ A. B. C. D. ‎【答案】 D ‎【解析】 如图,建立空间直角坐标系,则D1(0,0,2),A1(2,0,2),D(0,0,0),B(2,2,0),‎ ‎∴=(2,0,0),=(2,0,2),=(2,2,0),‎ 设平面A1BD的法向量n=(x,y,z),‎ 则令x=1,则n=(1,-1,-1).‎ ‎∴点D1到平面A1BD的距离 d===.‎ ‎8.二面角αlβ等于120°,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,且AB=AC=BD=1,则CD的长等于(  )‎ A. B. C.2 D. ‎【答案】 C ‎ ‎ 9.如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°. ‎ ‎ (1)求证:C1B⊥平面ABC;‎ ‎(2)设=λ(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.‎ ‎ (2)解 由(1)可知,AB,BC,BC1两两垂直.以B为原点,BC,BA,BC1所在直线为x,y,z轴建立空间直角坐标系. ‎ 则B(0,0,0),A(0,1,0),C(1,0,0),‎ C1(0,0,),B1(-1,0,).‎ 所以=(-1,0,), 所以=(-λ,0,λ),∴E(1-λ,0,λ),则=(1-λ,-1,λ),=(-1,-1,).‎ 设平面AB1E的一个法向量为n=(x,y,z),‎ 则得 令z=,则x=,y=,‎ ‎,∴n=,‎ ‎∵AB⊥平面BB1C1C,=(0,1,0)是平面的一个法向量,‎ ‎∴|cos〈n,〉|= ‎==.‎ 两边平方并化简得2λ2-5λ+3=0,所以λ=1或λ=(舍去).∴λ=1. ‎ ‎10.如图,在多面体ABCDEF中,底面ABCD是边长为2的的菱形,∠BAD=60°,四边形BDEF 是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.‎ ‎ (1)求证:平面BDGH∥平面AEF;‎ ‎(2)求二面角H-BD-C的大小.‎ 所以平面BDGH∥平面AEF.‎ 设平面BDH的法向量为n=(x,y,z),‎ 则⇒ 令z=1,得n=(0,-,1).‎ 由ED⊥平面ABCD,得平面BCD的法向量为=(0,0,3),‎ 则cos〈n,〉= ‎= ‎=.‎ 所以二面角H-BD-C的大小为60°. ‎ ‎11.如图,△ABC是以∠ABC为直角的三角形,SA⊥平面ABC,SA=BC=2,AB=4.M,N,D分别是SC,AB,BC的中点.‎ ‎ (1)求证:MN⊥AB;‎ ‎(2)求二面角SNDA的余弦值;‎ ‎(3)求点A到平面SND的距离.‎ ‎【解析】 以B为坐标原点,BC,BA为x,y轴的正方向,垂直于平面ABC的直线为z轴,建立空间直角坐标系(如图).‎ ‎ (3)∵=(0,-2,0),‎ ‎∴点A到平面SND的距离 d==.‎ ‎12.如图,将长为4,宽为1的长方形折叠成长方体ABCD-A1B1C1D1的四个侧面,记底面上一边AB=t(00),则P.‎ 设平面PAC的法向量为m=(x,y,z).‎ 由=,=(0,2,0),‎ 同理,可求得n=为平面BCEF的一个法向量.当m·n=0,即λ=时,平面PAC⊥平面BCEF,故存在这样的点,此时=.‎
查看更多

相关文章

您可能关注的文档