- 2021-06-30 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
人教A数学必修二 直线的方程习题课学案
甘肃省永昌县第一中学高中数学 直线的方程习题课学案 新人教A版必修2 学习目标: 1、掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程. 2、理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程. 3、掌握直线方程各种形式之间的互化. 学习重点、难点 重点:直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程. 难点:直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明. 学习过程 一、展示目标 二、自主学习 先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。3、要求小班、重点班学生全部完成,平行班学生完成A、B类问题。4、A类是自主探究,B类是合作交流。 三、交流互动 例1.(点斜式) 直线在轴上的截距为3,且倾斜角的正弦值为,求直线的方程。 注:1.求解本例时不要混淆概念,倾斜角应在内,从而有两个解。 2.在求直线方程时,不论选取何种方法,最后为统一形式,化为直线方程的一般式。 例2(截距式. 斜截式. 两点式)已知△ABC的三个顶点是A(3,-4)、B(0,3)、C(-6,0),求它的三条边所在的直线方程. 例3. (注意直线方程的设法) 求经过两条直线和的交点,且分别与直线(1)平行,(2)垂直的直线方程。 例4.(对称问题)已知点A的坐标为(-4,4),直线的方程为3+-2=0,求: (1)点A关于直线的对称点A′的坐标; (2)直线关于点A的对称直线的方程. 练习:一条光线从点P(6,4)射出,与X轴相交于点Q(2,0),经X轴反射,求入射光线和反射光线所在的直线方程.(书101页11) 四、达标检测 1.下面命题中正确的是………………( ) A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示. B.经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示 C.不经过原点的直线都可以用方程表示 D.经过点A(0,b)的直线都可以用方程y=kx+b表示 2.直线x+6y+2=0在x轴和y轴上的截距分别是( ) A. B. C. D.-2,-3 3.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为( ) (A)2x-3y=0; (B)x+y+5=0; (C)2x-3y=0或x+y+5=0 (D)x+y+5或x-y+5=0 4.与直线l:3x-4y+5=0关于x轴对称的直线的方程为( ) A)3x+4y-5=0 (B)3x+4y+5=0 (C)-3x+4y-5=0 (D)-3x+4y+5=0 5.点关于直线x+y=0对称的点是( ) A、B 、 C、 D、 6.直线l沿x轴负方向平移3个单位,再沿y轴正方向平1个单位后,又回到原来位置,那么l的斜率为( ) (A)-(B)-3; (C) (D)3 7.方程(-1)x-y+2+1=0(∈R)所表示的直线 ( ) A.恒过定点(-2,3) B.恒过定点(2,3) C.恒过点(-2,3)和点(2,3) D.都是平行直线 8.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( ) A3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=0 9.已知P(3,m )在过M(2,-1)和N(-3,4)的直线上,则m的值是 。 10.的三个顶点分别为,,.求边上中线所在的直线方程 五、归纳总结 学后反思、自查自纠。 六、作业布置 课后作业:110页B组3-8 七、课后反思查看更多