辽宁省沈阳市第一七O中学2019-2020学年高二上学期月考数学试卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

辽宁省沈阳市第一七O中学2019-2020学年高二上学期月考数学试卷

数学试题 试卷说明:‎ 本套试题主要考察了人教B版必修五的解三角形、数列、不等式及选修2-1的常用逻辑用语等相关知识,本套试题参考教学大纲及近几年高考命题趋势。本套试题难、中、易比率为2:3:5来设置的。其中考察重点在于基本知识、基本技能、基本技巧。本套试卷共分两卷其中Ⅰ卷为客观题共60分,Ⅱ卷为主观卷共90分。考试时间120分钟,满分150分。‎ Ⅰ卷(客观题)‎ 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)‎ ‎1.下列命题正确的是(  )‎ A.a,b∈R,且a>b,则a2>b2‎ B.若a>b,c>d,则> C.a,b∈R,且ab≠0,则+≥2‎ D.a,b∈R,且a>|b|,则an>bn(n∈N*)‎ ‎2.在等差数列中,已知,则S21等于( )‎ A.100 B.105 C.200 D.0‎ ‎3.不等式ax2+bx+2>0的解集是,则a+b的值是(  )‎ A.10 B.-10 C.-14 D.14‎ ‎4.已知x,y∈R+,2x+y=2,c=xy,那么c的最大值为(  )‎ A.1 B. C. D. ‎5.在△ABC中,若a = 2 ,, , 则B等于 ( )‎ A. B.或 C. D.或 ‎6.已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6=(  )‎ A.5 B.7 C.6 D.4 ‎7.在△ABC中,角均为锐角,且则△ABC的形状是( )‎ A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形 ‎ ‎8.在中,,则此三角形解的情况是 ( ) ‎ ‎ A.一解 B.两解 C.一解或两解 D.无解 ‎9.已知数列{an}为等比数列,Sn是它的前n项和.若a2·a3=2a1,且a4与2a7的等差中项为,则S5=(  )‎ A.35 B.33 C.31 D.29‎ ‎10.在△ABC中,已知a比b长2,b比c长2,且最大角的正弦值是,则△ABC的面积是(  )‎ A. B. C. D. ‎11.已知数列{an}满足a1=0,an+1=an+2n,那么a2 009的值是(  )‎ A.2 0092 B.2 008×2 007 C.2 009×2 010 D.2 008×2 009‎ ‎12.一个直角三角形三内角的正弦值成等比数列,则其最小内角的正弦值为(  )‎ A.     B. C. D. Ⅱ卷(主观卷)‎ 二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)‎ ‎13.已知数列{ a n }满足条件a1 = –2 , a n + 1 =2 + , 则a 3 = .‎ ‎14. 数列的通项公式,其前n项和时,则n等于_________‎ ‎15.设x,y满足约束条件若目标函数z=abx+y(a>0,b>0)的最大值为8,则a+b的最小值为________ ‎ ‎16、已知命题,.若命题是假命题,‎ 则实数的取值范围是 ‎ 三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)‎ ‎17.(本小题满分10分)已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.‎ ‎(1)求数列{an}的通项;‎ ‎(2)求数列的前n项和Sn.‎ ‎18.(本小题满分12分)某单位在抗雪救灾中,需要在A,B两地之间架设高压电线,测量人员在相距6 000 m的C、D两地(A,B,C,D在同一平面上)测得∠ACD=45°,∠ADC=75°,∠BCD=30°,∠BDC=15°(如图).假如考虑到电线的自然下垂和施工损耗等原因,实际所需电线长度大约是A、B两地之间距离的1.2倍,问施工单位至少应该准备多长的电线(精确到0.1 m)?(参考数据:≈1.4,≈1.7,≈2.6)‎ ‎19.(本小题满分12分)已知关于x的不等式2x2+(3a-7)x+(3+a-2a2)<0的解集中的一个元素为0,求实数a的取值范围,并用a表示该不等式的解集.‎ ‎20.(本小题满分12分)设锐角三角形的内角的对边分别为,‎ ‎(1)求角的大小;‎ ‎ (2)求的范围 ‎21.(本小题满分12分)某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:‎ 资金 单位产品所需资金(百元)‎ 空调机 洗衣机 月资金供应量(百元)‎ 成本 ‎30‎ ‎20‎ ‎300‎ 劳动力(工资)‎ ‎5‎ ‎10‎ ‎110‎ 单位利润 ‎6‎ ‎8‎ 试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?‎ ‎22.(本小题满分12分)设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,‎ b2(a2-a1)=b1.‎ ‎(1)求数列{an}和{bn}的通项公式;‎ ‎(2)设cn=,求数列{cn}的前n项和Tn.‎ 数学试题答案及评分标准 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)‎ ‎1.D 2.B 3.C 4.B 5.B 6.A 7.C 8.B. 9.C 10.B.‎ ‎11.D 12.B 二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)‎ ‎13. 6 14. 99 15 4 16. ‎ 三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)‎ ‎17.‎ 解析: (1)由题设知公差d≠0,‎ 由a1=1,a1,a3,a9成等比数列得=,‎ 解得d=1,d=0(舍去),故{an}的通项an=1+(n-1)×1=n.----------------------------------(5分)‎ ‎(2)由(1)知=2n,由等比数列前n项和公式得 Sn=2+22+23+…+2n==2n+1-2.---------------------------------------------------------(10分)‎ ‎18.解析: 在△ACD中∠CAD=180°-∠ACD-∠ADC=60°,‎ CD=6 000,∠ACD=45°,‎ 根据正弦定理,得AD==CD----------------------------------------(3分)‎ 在△BCD中,∠CBD=180°-∠BCD-∠BDC=135°,CD=6 000,∠BCD=30°,‎ 根据正弦定理,得BD==CD.------------------------------------------(6分)‎ 又在△ABD中,∠ADB=∠ADC+∠BDC=90°,‎ 根据勾股定理,得AB==CD=1 000,-----------------(9分)‎ 而1.2AB≈7 425.6,则实际所需电线长度约为7 425.6 m.---------------------------‎ ‎(12分)‎ ‎19.‎ 解析: 原不等式即(2x-a-1)(x+2a-3)<0,‎ 由x=0,适合不等式,故(0-a-1)(2a-3)<0,‎ 即(a+1)(2a-3)>0,∴a>或a<-1.------------------------------------------------------(5分)‎ 若a>,则-2a+3-=(1-a)<-,‎ ‎∴不等式的解集为; -----------------------------------------------------(8分)‎ 若a<-1,则-2a+3-=(1-a)>5,‎ ‎∴不等式的解集为.--------------------------------------------------------(11分)‎ 综上,a的取值范围是(-∞,-1)∪.‎ 当a>时,不等式的解集为.‎ 当a<-1时,不等式的解集为.-----------------------------------------(12分)‎ ‎20. 由题知 ‎ ‎ 又 又为锐角三角形 ‎ ----------------------------------------------------------------------------------------(5分)‎ ‎(2)= ‎ ‎= ---------------------------------------------( 7分)‎ 又且 --------------------------------------------(9分 )‎ ‎ ---------------------------------------(11分)‎ 故的取值范围是 -----------------------------------------------(12分)‎ ‎21.‎ 解析: 设空调机、洗衣机的月供应量分别是x,y台,总利润是z,则z=6x+8y 由题意有x,y均为整数.----------------------------------------------(6分)‎ 由图知直线y=-x+z过M(4,9)时,纵截距最大.---------------------------------------(8分)‎ 这时z也取最大值zmax=6×4+8×9=96(百元).--------------------------------------------(10分)‎ 故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9 600元.-------------(12分)‎ ‎22.‎ 解析: (1)当n≥2时,‎ an=Sn-Sn-1=2n2-2(n-1)2=4n-2,------------------------------------------------------------(2分)‎ 当n=1时,a1=S1=2满足上式,-----------------------------------------------------------------(3分)‎ 故{an}的通项式为an=4n-2.------------------------------------------------------------------------(4分)‎ 设{bn}的公比为q,由已知条件b2(a2-a1)=b1知,b1=2,b2=,所以q=,‎ ‎∴bn=b1qn-1=2×,即bn=.-----------------------------------------------------------------(6分)‎ ‎(2)∵cn===(2n-1)4n-1,-------------------------------------------------------------------(7分)‎ ‎∴Tn=c1+c2+…+cn=[1+3×41+5×42+…+(2n-1)4n-1].‎ ‎4Tn=[1×4+3×42+5×42+…+(2n-3)4n-1+(2n-1)4n].‎ 两式相减得:‎ ‎3Tn=-1-2(41+42+43+…+4n-1)+(2n-1)4n -----------------------------------------(9分)‎ ‎=[(6n-5)4n+5]. ----------------------------------------------------------------------------------(11分)‎ ‎∴Tn=[(6n-5)4n+5].---------------------------------------------------------------------------------(12分)‎
查看更多

相关文章

您可能关注的文档