2019届二轮复习(理)专题68绝对值不等式学案(全国通用)
1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:
①|a+b|≤|a|+|b|;
②|a-b|≤|a-c|+|c-b|.
2.会利用绝对值的几何意义求解以下类型的不等式:
|ax+b|≤c;|ax+b|≥c;
|x-a|+|x-b|≥c.
3.会用绝对值不等式、平均值不等式证明一些简单问题;能够利用平均值不等式求一些特定函数的最(极)值.
一、绝对值不等式的解法
1.|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法
(1)若c>0,则|ax+b|≤c等价于-c≤ax+b≤c,|ax+b|≥c等价于ax+b≥c或ax+b≤-c,然后根据a,b的值解出即可。
(2)若c<0,则|ax+b|≤c的解集为∅,|ax+b|≥c的解集为R。
2.|x-a|+|x-b|≥c(或≤c)(c>0),|x-a|-|x-b|≤c(或≤c)(c>0)型不等式的解法
可通过零点分区间法或利用绝对值的几何意义进行求解.
(1)零点分区间法的一般步骤
①令每个绝对值符号的代数式为零,并求出相应的根;
②将这些根按从小到大排列,把实数集分为若干个区间;
③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;
④取各个不等式解集的并集就是原不等式的解集.
(2)利用绝对值的几何意义
由于|x-a|+|x-b|与|x-a|-|x-b|分别表示数轴上与x对应的点到a,b对应的点的距离之和与距离之差,因此对形如|x-a|+|x-b|≤c(c>0)或|x-a|-|x-b|≥c(c>0)的不等式,利用绝对值的几何意义求解更直观.
3.|f(x)|>g(x),|f(x)|<g(x)(g(x)>0)型不等式的解法
(1)|f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x).
(2)|f(x)|<g(x)⇔-g(x)<f(x)<g(x).
二、绝对值不等式的证明
证明绝对值不等式 a|-|b ≤|a±b|≤|a|+|b|.主要的三种方法
1.利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明.
2.利用三角不等式 a|-|b ≤|a±b|≤|a|+|b|进行证明.
3.转化为函数问题,数形结合进行证明.
三、绝对值不等式的综合应用
1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.
2.f(x)<a恒成立⇔f(x)max<a.
f(x)>a恒成立⇔f(x)min>a.
高频考点一 含绝对值不等式的解法
【例1】 解不等式|x-1|+|x+2|≥5.
法二 原不等式|x-1|+|x+2|≥5⇔
或
或解得x≥2或x≤-3,
∴原不等式的解集为(-∞,-3]∪[2,+∞).
法三 将原不等式转化为|x-1|+|x+2|-5≥0.
令f(x)=|x-1|+|x+2|-5,则
f(x)=作出函数的图象,如图所示.
由图象可知,当x∈(-∞,-3]∪[2,+∞)时,y≥0,
∴原不等式的解集为(-∞,-3]∪[2,+∞).
【方法规律】形如|x-a|+|x-b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a,b],(b,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x-a|+|x-b|>c(c>0)的几何意义:数轴上到点x1=a和x2=b的距离之和大于c的全体;(3)图象法:作出函数y1=|x-a|+|x-b|和y2=c的图象,结合图象求解.
【变式探究】 (2016·全国Ⅰ卷)已知函数f(x)=|x+1|-|2x-3|.
(1)在图中画出y=f(x)的图象;
(2)求不等式|f(x)|>1的解集.
(2)由f(x)的表达式及图象,当f(x)=1时,可得x=1或x=3;
当f(x)=-1时,可得x=或x=5,
故f(x)>1的解集为{x|1
1的解集为.
高频考点二 含参数的绝对值不等式问题
【例2】 (1)对任意x,y∈R,求|x-1|+|x|+|y-1|+|y+1|的最小值.
(2)对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-2y+1|的最大值.
【方法规律】求含绝对值的函数最值时,常用的方法有三种:(1)利用绝对值的几何意义;(2)利用绝对值三角不等式,即|a|+|b|≥|a±b|≥|a|-|b|;(3)利用零点分区间法.
【变式探究】 (1)若关于x的不等式|2 014-x|+|2 015-x|≤d有解,求实数d的取值范围.
(2)不等式≥|a-2|+sin y对一切非零实数x,y均成立,求实数a的取值范围.
解 (1)∵|2 014-x|+|2 015-x|≥|2 014-x-2 015+x|=1,
∴关于x的不等式|2 014-x|+|2 015-x|≤d有解时,d≥1.
(2)∵x+∈(-∞,-2]∪[2,+∞),
∴∈[2,+∞),其最小值为2.
又∵sin y的最大值为1,
故不等式≥|a-2|+sin y恒成立时,
有|a-2|≤1,解得a∈[1,3].
高频考点三 含绝对值的不等式的应用
【例3】已知函数f(x)=|2x-a|+a.
(1)当a=2时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求实数a的取值范围.
解 (1)当a=2时,f(x)=|2x-2|+2.
解不等式|2x-2|+2≤6得-1≤x≤3.
因此f(x)≤6的解集为{x|-1≤x≤3}.
(2)当x∈R时,
f(x)+g(x)=|2x-a|+a+|1-2x|≥|2x-a+1-2x|+a=|1-a|+a,当x=时等号成立,
所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3.
当a≤1时,①等价于1-a+a≥3,无解.
当a>1时,①等价于a-1+a≥3,解得a≥2.
所以实数a的取值范围是[2,+∞).
【方法规律】(1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决.(2)数形结合是解决与绝对值有关的综合问题的常用方法.
【变式探究】已知函数f(x)=|x+1|-2|x-a|,a>0.
(1)当a=1时,求不等式f(x)>1的解集;
(2)若f(x)的图象与x轴围成的三角形面积大于6,求实数a的取值范围.
(2)由题设可得,f(x)=
所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A,B(2a+1,0),C(a,a+1),
△ABC的面积为(a+1)2.
由题设得(a+1)2>6,故a>2.
所以实数a的取值范围为(2,+∞).
1. (2018年全国I卷理数)[选修4–5:不等式选讲]
已知.
(1)当时,求不等式的解集; ]
(2)若时不等式成立,求的取值范围.
【答案】(1).
(2).
【解析】
2. (2018年全国Ⅱ卷理数) [选修4-5:不等式选讲]
设函数.
(1)当时,求不等式的解集;
(2)若,求的取值范围.
【答案】(1),(2)
【解析】(1)当时,
可得的解集为.
(2)等价于.
而,且当时等号成立.故等价于.
由可得或,所以的取值范围是.
3. (2018年全国Ⅲ卷理数) [选修4—5:不等式选讲]
设函数.
(1)画出的图像;
(2)当,,求的最小值.
【答案】(1)见解析
(2)5
【解析】(1) 的图像如图所示.
(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为5。
4. (2018年江苏卷)[选修4—5:不等式选讲]
若x,y, 为实数,且x+2y+2 =6,求的最小值.
【答案】4
【解析】证明:由柯西不等式,得.
因为,所以,
当且仅当时,不等式取等号,此时,
所以的最小值为4.
1.【2017课标1,理】已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.
【答案】(1);(2).
【解析】
(2)当时, .
所以的解集包含,等价于当时.
又在的 最小值必为与之一,所以且,得.所以的取值范围为.
2.【2017江苏,21】[选修4-5:不等式选讲](本小题满分10分)
已知为实数,且证明
【答案】见解析
【解析】证明:由柯西不等式可得: ,
因为
所以,
因此.
3.【2017课标II,理23】已知。证明:
(1);
(2)。
【答案】(1)证明略;(2)证明略。
1.【2016高考新课标1卷】(本小题满分10分),选修4—5:不等式选讲
已知函数.
(I)在答题卡第(24)题图中画出的图像;
(II)求不等式的解集.
【答案】(I)见解析(II)
【解析】⑴如图所示:
2.【2016高考新课标2理数】选修4—5:不等式选讲
已知函数,为不等式的解集.
(Ⅰ)求;
(Ⅱ)证明:当时,.
【答案】(Ⅰ);(Ⅱ)详见解析.
所以的解集.
(II)由(I)知,当时,,
从而,
因此
1.【2015高考新课标1,理24】选修4—5:不等式选讲
已知函数=|x+1|-2|x-a|,a>0.
(Ⅰ)当a=1时,求不等式f(x)>1的解集;
(Ⅱ)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围.
【答案】(Ⅰ)(Ⅱ)(2,+∞)
【解析】
(Ⅰ)当a=1时,不等式f(x)>1化为|x+1|-2|x-1|>1,
等价于或或,解得,
所以不等式f(x)>1的解集为. ……5分
(Ⅱ)由题设可得,,
所以函数的图像与轴围成的三角形的三个顶点分别为,,,所以△ABC的面积为.
由题设得>6,解得.
所以的取值范围为(2,+∞). ……10分
1.(2014·福建卷) (Ⅲ)选修45:不等式选讲
已知定义在R上的函数f(x)=|x+1|+|x-2|的最小值为a.
(1)求a的值;
(2)若p,q,r是正实数,且满足p+q+r=a,求证:p2+q2+r2≥3.
2.(2014·广东卷)不等式|x-1|+|x+2|≥5的解集为 . | |k ]
【答案】(-∞,-3]∪[2,+∞)
【解析】本题考查绝对值不等式的解法.|x-1|+|x+2|≥5的几何意义是数轴上的点到1与-2的距离之和大于等于5的实数,所以不等式的解为x≤-3或x≥2,即不等式的解集为(-∞,-3]∪[2,+∞).
3.(2014·湖南卷)若关于x的不等式|ax-2|<3的解集为,则a= .
【答案】-3
【解析】依题意可得-3<ax-2<3,即-1<ax<5 ,而-<x<,即-1<-3x<5,所以a=-3.
4.[2014·江西卷] (1)(不等式选做题)对任意x,y∈R,|x-1|+|x|+|y-1|+|y+1|的最小值为( )
A.1 B.2 C.3 D.4
【答案】(1)C
【解析】易知|x-1|+|x|≥1,当且仅当0≤x≤1时等号成立;|y-1|+|y+1|≥2, 当且仅当-1≤y≤1时等号成立.故|x-1|+|x|+|y-1|+|y+1|≥3.