高考数学 17-18版 附加题部分 第1章 第62课 课时分层训练6

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学 17-18版 附加题部分 第1章 第62课 课时分层训练6

课时分层训练(六)‎ A组 基础达标 ‎(建议用时:30分钟)‎ ‎1.某班从4名男生、2名女生中选出3人参加志愿者服务,若选出的男生人数为ξ,求ξ的方差.‎ ‎[解] 依题意,随机变量ξ服从超几何分布,ξ可能的取值为1,2,3.‎ P(ξ=k)=,k=1,2,3.‎ ξ的概率分布为 ξ ‎1‎ ‎2‎ ‎3‎ P E(ξ)=1×+2×+3×=2.‎ V(ξ)=×(1-2)2+×(2-2)2+×(3-2)2=0.4.‎ ‎2.现有一游戏装置如图622,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向左、右两边落下.游戏规则为:若小球最终落入A槽,得10张奖票,若落入B槽,得5张奖票;若落入C槽,得重投一次的机会,但投球的总次数不超过3次.‎ 图622‎ ‎(1)求投球一次,小球落入B槽的概率;‎ ‎(2)设玩一次游戏能获得的奖票数为随机变量X,求X的概率分布及均值.‎ ‎ 【导学号:62172336】‎ ‎[解] (1)由题意可知投一次小球,落入B槽的概率为2+2=.‎ ‎(2)落入A槽的概率为2=,‎ 落入B槽的概率为,‎ 落入C槽的概率为2=.‎ X的所有可能取值为0,5,10,‎ P(X=0)=3=,‎ P(X=5)=+×+2×=.‎ P(X=10)=+×+2×=.‎ 所以X的概率分布为 X ‎0‎ ‎5‎ ‎10‎ P E(X)=0×+5×+10×=.‎ ‎3.(2017·南通二调)一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,k倍的奖励(k∈N+),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X元.‎ ‎(1)求概率P(X=0)的值;‎ ‎(2)为使收益X的数学期望不小于0元,求k的最小值.‎ ‎(注:概率学源于赌博,请自觉远离不正当的游戏!) 【导学号:62172337】‎ ‎[解] (1)事件“X=0”表示“有放回的摸球3回,所指定的玻璃球只出现1次”,‎ 则P(X=0)=3××2=.‎ ‎(2)依题意,X的可能值为k,-1,1,0,‎ 且P(X=k)=3=,P(X=-1)=3=,P(X=1)=3×2× ‎=,P(X=0)=,‎ 结合(1)知,参加游戏者的收益X的数学期望为 E(X)=k×+(-1)×+1×=(元).‎ 为使收益X的数学期望不小于0元,所以k≥110,即kmin=110.‎ ‎4.(2016·山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:‎ ‎(1)“星队”至少猜对3个成语的概率;‎ ‎(2)“星队”两轮得分之和X的概率分布和数学期望E(X).‎ ‎[解] (1)记事件A:“甲第一轮猜对”,‎ 记事件B:“乙第一轮猜对”,‎ 记事件C:“甲第二轮猜对”,‎ 记事件D:“乙第二轮猜对”,‎ 记事件E:“‘星队’至少猜对3个成语”.‎ 由题意,E=ABCD+BCD+ACD+ABD+ABC,‎ 由事件的独立性与互斥性,‎ P(E)=P(ABCD)+P(BCD)+P(ACD)+P(ABD)+P(ABC)=P(A)P(B)P(C)P(D)+P()P(B)P(C)P(D)+P(A)P()P(C)P(D)+P(A)P(B)P()P(D)+P(A)P(B)P(C)P()=×××+2×=,‎ 所以“星队”至少猜对3个成语的概率为.‎ ‎(2)由题意,随机变量X可能的取值为0,1,2,3,4,6.‎ 由事件的独立性与互斥性,得 P(X=0)=×××=,‎ P(X=1)=2× ‎==,‎ P(X=2)=×××+×××+×××+×××=,‎ P(X=3)=×××+×××==,‎ P(X=4)=2× ‎==,‎ P(X=6)=×××==.‎ 可得随机变量X的概率分布为 X ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎6‎ P 所以数学期望E(X)=0×+1×+2×+3×+4×+6×=.‎ B组 能力提升 ‎(建议用时:15分钟)‎ ‎1.(2016·南京盐城二模)甲、乙两人投篮命中的概率分别为与,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.‎ ‎(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;‎ ‎(2)设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ).‎ ‎[解] (1)比赛结束后甲的进球数比乙的进球数多1个有以下几种情况:‎ 甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.‎ 所以比赛结束后甲的进球数比乙的进球数多1个的概率 P=C23+C2C3+C3C3=.‎ ‎(2)ξ的取值为0,1,2,3,所以ξ的概率分布列为 ξ ‎0‎ ‎1‎ ‎2‎ ‎3‎ P 所以数学期望E(ξ)=0×+1×+2×+3×=1.‎ ‎2.计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.‎ ‎(1)求未来4年中,至多有1年的年入流量超过120的概率;‎ ‎(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:‎ 年入流量X ‎40<X<80‎ ‎80≤X≤120‎ X>120‎ 发电机最多 可运行台数 ‎1‎ ‎2‎ ‎3‎ 若某台发电机运行,则该台年利润为5 000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?‎ ‎[解] (1)依题意,p1=P(40<X<80)==0.2,p2=P(80≤X≤120)==0.7,‎ p3=P(X>120)==0.1.‎ 由二项分布知,在未来4年中至多有1年的年入流量超过120的概率为 p=C(1-p3)4+C(1-p3)3p3=4+4×3×=0.947 7.‎ ‎(2)记水电站年总利润为Y(单位:万元).‎ ‎①安装1台发电机的情形.‎ 由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5 000,E(Y)=5 000×1=5 000.‎ ‎②安装2台发电机的情形.‎ 依题意知,当40<X<80时,一台发电机运行,此时Y=5 000-800=4 200,因此P(Y=4 200)=P(40<X<80)=p1=0.2;当X≥80时,两台发电机运行,此时Y=5 000×2=10 000,因此P(Y=10 000)=P(X≥80)=p2+p3=0.8.由此得Y的分布列如下:‎ Y ‎4 200‎ ‎10 000‎ P ‎0.2‎ ‎0.8‎ 所以,E(Y)=4 200×0.2+10 000×0.8=8 840.‎ ‎③安装3台发电机的情形.‎ 依题意,当40<X<80时,一台发电机运行,此时Y=5 000-1 600=3 400,因此P(Y=3 400)=P(40<X<80)=p1=0.2;当80≤X≤120时,两台发电机运行,此时Y=5 000×2-800=9 200,因此P(Y=9 200)=P(80≤X≤120)=p2=0.7;当X>120时,三台发电机运行,此时Y=5 000×3=15 000,因此P(Y=15 000)=P(X>120)=p3=0.1,由此得Y的分布列如下:‎ Y ‎3 400‎ ‎9 200‎ ‎15 000‎ P ‎0.2‎ ‎0.7‎ ‎0.1‎ 所以,E(Y)=3 400×0.2+9 200×0.7+15 000×0.1=8 620.‎ 综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.‎ ‎3.(2017·南通模拟)一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的A,B,C三种商品有购买意向.已知该网民购买A种商品的概率为,购买B种商品的概率为,购买C种商品的概率为.假设该网民是否购买这三种商品相互独立.‎ ‎(1)求该网民至少购买2种商品的概率;‎ ‎(2)用随机变量h表示该网民购买商品的种数,求h的概率分布和数学期望.‎ ‎[解] (1)记“该网民购买i种商品”为事件Ai,i=2,3,则:P(A3)=××= ‎,‎ P(A2)=××+××+××=,‎ 所以该网民至少购买2种商品的概率为P(A3)+P(A2)=+=.‎ 该网民至少购买2种商品的概率为.‎ ‎(2)随机变量h的可能取值为0,1,2,3,‎ P(h=0)=××=,‎ 又P(h=2)=P(A2)=,P(h=3)=P(A3)=,所以P(h=1)=1---=.‎ 所以随机变量h的概率分布为:‎ h ‎0‎ ‎1‎ ‎2‎ ‎3‎ P 故数学期望E(h)=0×+1×+2×+3×=.‎ ‎4.(2017·苏州市期中)某公司对新招聘的员工张某进行综合能力测式,共设置了A,B,C三个测试项目.假定张某通过项目A的概率为,通过项目B,C的概率均为a(0
查看更多

相关文章