2020届二轮复习二项分布与正态分布课件(30张)(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020届二轮复习二项分布与正态分布课件(30张)(全国通用)

12 . 4   二项分布与正态分布 - 2 - 知识梳理 双基自测 2 3 1 4 1 . 条件概率及其 性质 P ( B|A ) +P ( C|A ) - 3 - 知识梳理 双基自测 2 3 1 4 2 . 事件的相互独立性 (1) 定义 : 设 A , B 为两个事件 , 若 P ( AB ) =      , 则称事件 A 与事件 B 相互独立 .   (2) 性质 : ① 若事件 A 与 B 相互独立 , 则 P ( B|A ) =     , P ( A|B ) =P ( A ), P ( AB ) =        .   ③ 如果 A 1 , A 2 , … , A n 相互独立 , 那么 P ( A 1 A 2 … A n ) =        .   P ( A ) P ( B ) P ( B ) P ( A ) P ( B ) P ( A 1 ) P ( A 2 ) … P ( A n ) - 4 - 知识梳理 双基自测 2 3 1 4 3 . 独立重复试验与二项分布 (1) 独立重复试验是指在相同条件下可重复进行的 , 各次试验之间相互独立的一种试验 . 在这种试验中 , 每一次试验只有两种结果 , 即要么发生 , 要么不发生 , 且任何一次试验中各事件发生的概率都是一样的 . (2) 在 n 次独立重复试验中 , 用 X 表示事件 A 发生的次数 , 设每次试验中事件 A 发生的概率为 p , 则 P ( X=k ) =                    , 此时称随机变量 X 服从          , 记作          , 并称 p 为成功概率 .   二项分布 X~B ( n , p ) - 5 - 知识梳理 双基自测 2 3 1 4 4 . 正态分布 (1) 正态曲线 : 函数 其中 实数 μ 和 σ ( σ > 0) 为参数 . 我们称函数 φ μ , σ ( x ) 的图象为正态分布密度曲线 , 简称正态曲线 . (2) 正态曲线的特点 ① 曲线在 x 轴的上方 , 与 x 轴不相交 ; ② 曲线是单峰的 , 它关于直线 x= μ 对称 ; ④ 曲线与 x 轴之间的面积为 1; ⑤ 当 σ 一定时 , 曲线随着 μ 的变化而沿 x 轴平移 ; ⑥ 当 μ 一定时 , 曲线的形状由 σ 确定 . σ 越大 , 曲线越 “ 矮胖 ”, 总体分布越分散 ; σ 越小 , 曲线越 “ 瘦高 ”, 总体分布越集中 . - 6 - 知识梳理 双基自测 2 3 1 4 (3) 正态分布的定义及表示 : 若对于任何实数 a , b ( a 120 ) = ( 1 - 0 . 70) = 0 . 15 . ∴ 应从 120 分以上的试卷中抽取 100×0 . 15 = 15 份 , 故选 C . (2) 解: ① 由不同成绩段的人数服从正态分布 ξ ~N (127,7 2 ), 可知平均成绩 μ = 127 . ② P ( ξ > 141) =P ( ξ > 127 + 2 × 7 ) = × [ 1 -P ( μ - 2 σ < ξ ≤ μ + 2 σ )]≈0 . 022 8, 故得分超过 141 的人数为 1 000 × 0 . 022 8≈23 .
查看更多