2019高三数学(人教A版 文)一轮课时分层训练41 直线的倾斜角与斜率、直线的方程

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019高三数学(人教A版 文)一轮课时分层训练41 直线的倾斜角与斜率、直线的方程

课时分层训练(四十一) ‎ 直线的倾斜角与斜率、直线的方程 ‎ (对应学生用书第215页)‎ A组 基础达标 ‎(建议用时:30分钟)‎ 一、选择题 ‎1.倾斜角为135°,在y轴上的截距为-1的直线方程是(  )‎ A.x-y+1=0 B.x-y-1=0‎ C.x+y-1=0 D.x+y+1=0‎ D [直线的斜率为k=tan 135°=-1,所以直线方程为y=-x-1,即x+y+1=0.]‎ ‎2.若方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则参数m满足的条件是(  )‎ A.m≠- B.m≠0‎ C.m≠0且m≠1 D.m≠1‎ D [由解得m=1,‎ 故m≠1时方程表示一条直线.]‎ ‎3.直线x+(a2+1)y+1=0的倾斜角的取值范围是(  )‎ A. B. C.∪ D.∪ B [∵直线的斜率k=-,∴-1≤k<0,则倾斜角的范围是.]‎ ‎4.在等腰三角形AOB中,OA=AB,点O(0,0),A(1,3),点B在x轴的正半轴上,则直线AB的方程为(  )‎ A.y-1=3(x-3) B.y-1=-3(x-3)‎ C.y-3=3(x-1) D.y-3=-3(x-1)‎ D [由题意知OB的中点M(1,0),则B(2,0),易得kAB=-3,‎ 由两点式,得AB的方程为y-3=-3(x-1).]‎ ‎5.(2018·烟台模拟)过点(2,1),且倾斜角比直线y=-x-1的倾斜角小的直线方程是(  )‎ A.x=2 B.y=1‎ C.x=1 D.y=2‎ A [∵直线y=-x-1的斜率为-1,则倾斜角为π.‎ 依题意,所求直线的倾斜角为-=,斜率不存在,‎ ‎∴过点(2,1)的所求直线方程为x=2.]‎ 二、填空题 ‎6.直线l与两直线y=1,x-y-7=0分别交于P,Q两点,线段PQ中点是(1,-1),则l的斜率是________.‎ ‎ 【导学号:79170267】‎ ‎- [设P(m,1),则Q(2-m,-3),‎ ‎∴(2-m)+3-7=0,∴m=-2,‎ ‎∴P(-2,1),‎ ‎∴k==-.]‎ ‎7.设点A(-1,0),B(1,0),直线2x+y-b=0与线段AB相交,则b的取值范围是________.‎ ‎ [-2,2] [b为直线y=-2x+b在y轴上的截距,‎ 如图,当直线y=-2x+b过点A(-1,0)和点B(1,0)时,b分别取得最小值和最大值,‎ ‎∴b的取值范围是[-2,2].]‎ ‎8.(2018·哈尔滨模拟)一条直线经过点A(-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.‎ x+2y-2=0或2x+y+2=0 [设所求直线方程为+=1.‎ 由题意得 解得或 因此直线方程为+y=1或-x-=1‎ 即x+2y-2=0或2x+y+2=0.]‎ 三、解答题 ‎9.(2017·潍坊模拟)直线l过点(-2,2)且与x轴,y轴分别交于点(a,0),(0,b),若|a|=|b|,求l的方程.‎ ‎ 【导学号:79170268】‎ ‎[解] 若a=b=0,则直线l过点(0,0)与(-2,2),‎ 直线l的斜率k=-1,直线l的方程为y=-x,即x+y=0.‎ 若a≠0,b≠0,则直线l的方程为+=1,‎ 由题意知解得 此时,直线l的方程为x-y+4=0.‎ 综上,直线l的方程为x+y=0或x-y+4=0.‎ ‎10.设直线l的方程为(a+1)x+y+2-a=0(a∈R).‎ ‎(1)若l在两坐标轴上截距相等,求l的方程;‎ ‎(2)若l不经过第二象限,求实数a的取值范围.‎ ‎[解] (1)当直线过原点时,在x轴和y轴上的截距为零,‎ ‎∴a=2,方程即为3x+y=0.‎ 当直线不过原点时,截距存在且均不为0,‎ ‎∴=a-2,即a+1=1, 3分 ‎∴a=0,方程即为x+y+2=0.‎ 因此直线l的方程为3x+y=0或x+y+2=0. 6分 ‎(2)将l的方程化为y=-(a+1)x+a-2,8分 ‎∴或∴a≤-1. 10分 综上可知,a的取值范围是a≤-1. 12分 B组 能力提升 ‎(建议用时:15分钟)‎ ‎1.设A,B是x轴上的两点,点P的横坐标为2且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程为(  )‎ A.2x+y-7=0     B.x+y-5=0‎ C.2y-x-4=0 D.2x-y-1=0‎ B [由条件得点A的坐标为(-1,0),点P的坐标为(2,3),因为|PA|=|PB|,根据对称性可知,点B的坐标为(5,0),从而直线PB的方程为=,整理得x+y-5=0.]‎ ‎2.已知A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是________.‎ ‎3 [直线AB的方程为+=1.‎ ‎∵动点P(x,y)在直线AB上,则x=3-y,‎ ‎∴xy=3y-y2=(-y2+4y)‎ ‎=≤3,‎ 即当P点坐标为时,xy取最大值3.]‎ ‎3.(2018·临沂模拟)已知直线l:(2+m)x+(1-2m)y+4-3m=0.‎ ‎(1)求证:不论m为何实数,直线l过一定点M;‎ ‎(2)过定点M作一条直线l1,使夹在两坐标轴之间的线段被M 点平分,求直线l1的方程.‎ ‎[解] (1)证明:直线l的方程整理得(2x+y+4)+m(x-2y-3)=0. 2分 由,解得,‎ 所以无论m为何实数,直线l过定点M(-1,-2). 4分 ‎(2)过定点M(-1,-2)作一条直线l1,使夹在两坐标轴之间的线段被M点平分,‎ 则直线l1过点(-2,0),(0,-4), 6分 设直线l1的方程为y=kx+b,‎ 把两点坐标代入得, 10分 解得,‎ ‎∴直线方程为y=-2x-4. 12分
查看更多

相关文章

您可能关注的文档