- 2021-06-24 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学复习专题练习第6讲 双曲线
第6讲 双曲线 一、选择题 1.若动点P到F1(-5,0)与到F2(5,0)的距离的差为±8,则P点的轨迹方程是( ) A.+=1 B.-=1 C.+=1 D.-=1 解析 由题意知P点的轨迹是双曲线. 因为c=5,a=4,所以b2=c2-a2=25-16=9. 因为双曲线的焦点在x轴上, 所以P点的轨迹方程为-=1. 答案 D 2.已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为 ( ). A.-=1 B.-=1 C.-=1 D.-=1 解析 不妨设a>0,b>0,c=. 据题意,2c=10,∴c=5. ① 双曲线的渐近线方程为y=±x,且P(2,1)在C的渐近线上,∴1=. ② 由①②解得b2=5,a2=20,故正确选项为A. 答案 A 3.已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为 ( ). A.-2 B.- C.1 D.0 解析 设点P(x,y),其中x≥1.依题意得A1(-1,0),F2(2,0),则有=x2-1,y2=3(x2-1),·=(-1-x,-y)·(2-x,-y)=(x+1)(x-2)+y2=x2+3(x2-1)-x-2=4x2-x-5=42-,其中x≥1.因此,当x=1时,·取得最小值-2,选A. 答案 A 4.如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是 ( ). A.3 B.2 C. D. 解析 设双曲线的方程为-=1,椭圆的方程为+=1,由于M,O,N将椭圆长轴四等分,所以a2=2a1,又e1=,e2=,所以==2. 答案 B 5.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为( ) A. B. C.2 D.3 解析 不妨设双曲线的焦点在x轴上(焦点在y轴上的离心率与焦点在x轴上的离心率一样),方程为-=1(a>0,b>0),设F(c,0),A(x1,y1),B(x2,y2),由l过点F且与对称轴垂直,可得x1=x2=c,将其代入双曲线的方程得|y1|=|y2|=,故|AB|=,依题意,|AB|=2a×2=4a,∴=4a,化简整理得b2=2a2,解得e=. 答案 B 6.已知双曲线-=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于 ( ). A. B.4 C.3 D.5 解析 易求得抛物线y2=12x的焦点为(3,0),故双曲线-=1的右焦点为(3,0),即c=3,故32=4+b2,∴b2=5,∴双曲线的渐近线方程为y=±x,∴双曲线的右焦点到其渐近线的距离为=. 答案 A 二、填空题 7.在平面直角坐标系xOy中,若双曲线-=1的离心率为,则m的值为________. 解析 由题意得m>0,∴a=,b=. ∴c=,由e==,得=5, 解得m=2. 答案 2 8.已知点F是双曲线-=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围为________. 解析 由题意知,△ABE为等腰三角形.若△ABE是锐角三角形,则只需要∠AEB为锐角.根据对称性,只要∠AEF<即可.直线AB的方程为x=-c,代入双曲线方程得y2=,取点A,则|AF|=,|EF|=a+c,只要|AF|<|EF|就能使∠AEF<,即1,故1查看更多