- 2021-06-24 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019学年高一数学下学期期末考试试题 新目标版
2019年上学期高一年级数学期末考试试卷 考试时量:120分钟 分值:150分 一.选择题(每小题5分,共12小题) 1.已知角的终边经过点,则的值为 ( ) A. B. C. D. 2.下列命题正确的是( ) A.单位向量都相等 B.若与是共线向量,与是共线向量,则与是共线向量 C.,则 D.若与是单位向量,则 3. 某研究性学习课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( ) A.6 B. 8 C.10 D.12 4.执行右面的程序框图,输出的S是 ( ) A.25 B.9 C.17 D.20 5.已知某8个数的平均数为5,方差为2,现又加入一个新数据5,此时这9个数的平均数为,方差为,则( ) A. B. C. D. 6.从某高中随机选取5名高二男生,其身高和体重的数据如下表所示: 身高 x(cm) 160 165 170 175 180 14 体重y(kg) 63 66 70 72 74 由表可得回归直线方程,据此模型预报身高为的男生的体重大约为( ) A.70.09 kg B.70.12 kg C.70.55 kg D.71.05 kg 7.已知向量,,则的 最大、最小值分别是( ) A.与 B.与 C.与2 D. 8与4 8、已知点P是边长为4的正方形内任一点,则点P到四个顶点的距离均大于2的概率是( ) A. B.1- C. D. 9.代数式化简后的值为( ) A. B. C. D. 10.在区间 上任取一个数 ,则圆与 圆有公共点的概率为( ) A. B. C. D. 11.已知是方程的两根,则等于( ) A. B. C. D. 12.使函数 是奇函数,且在 上是减函数的 14 的一个值是( ) A B C D 二.填空题(每小题5分,共4小题) 13.求值: 14.在圆中,等于半径长的弦长所对的圆心角的弧度数是______ 15.已知平面上三点A、B、C满足,,,则的值等于 . 16.对下列命题:①函数是奇函数; ②直线是函数 图像的一条对称轴;③函数的图象关于点成中心对称图形; ④存在实数,使得. 其中正确的序号为____ __.(填所有正确的序号) 三.解答题(共70分) 17.(本小题满分10分) 14 随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图(中间的数字表示身高的百位、十位数,旁边的数字分别表示身高的个位数)如图所示. (Ⅰ)根据茎叶图判断哪个班的平均身高较高; (Ⅱ)计算甲班的样本方差. 18.(本小题满分12分) 已知定义在上的函数. (Ⅰ)求的单调递增区间; (Ⅱ)若方程只有一解,求实数的取值范围. 19.(本小题满分12分) 14 已知平面内三点、、,若, 求的值. 20.(本小题满分12分) 某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150)后得到 如下部分频率分布直方图. 观察图形的信息,回答下列问题: (Ⅰ)求分数在[120,130)内的频率; (Ⅱ)若在同一组数据中,将该组 区间的中点值(如:组区间[100,110)的 中点值为=105.)作为这组数 据的平均分,据此,估计本次考试的平均分; (Ⅲ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率. 14 21.(本小题满分12分) 已知,,,. (1)求的值; (2)求的值. 22.(本小题满分12分) 已知向量,设函数且的最小正周期为. (1)求的单调递增区间; (2)先将函数的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,然后将图象向下平移个单位,得到函数的图象,求函数在区间上上的取值范围. 醴陵二中2018年上学期高一年级数学期末考试试卷答案 命题人:刘小林 审题人: 张华 考试时量:120分钟 分值:150分 一.选择题(每小题5分,共12小题) 14 1.已知角的终边经过点,则的值为 ( A ) A. B. C. D. 2.下列命题正确的是( C ) A.单位向量都相等 B.若与是共线向量,与是共线向量,则与是共线向量 C.,则 D.若与是单位向量,则 3. 某研究性学习课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( B ) A.6 B. 8 C.10 D.12 4.执行右面的程序框图,输出的S是 ( C ) A.25 B.9 C.17 D.20 5.已知某8个数的平均数为5,方差为2,现又加入一个新数据5,此时这9个数的平均数为,方差为,则( A ) A. B. C. D. 6.从某高中随机选取5名高二男生,其身高和体重的数据如下表所示: 身高 x(cm) 160 165 170 175 180 体重y(kg) 63 66 70 72 74 由表可得回归直线方程,据此模型预报身高为的男生的体重大约为( B ) A.70.09 kg B.70.12 kg C.70.55 kg D.71.05 kg 14 7.已知向量,,则的 最大、最小值分别是( A ) A.与 B.与 C.与2 D. 8与4 8、已知点P是边长为4的正方形内任一点,则点P到四个顶点的距离均大于2的概率是( B ) A. B.1- C. D. 9.代数式化简后的值为( D ) A. B. C. D. 10.在区间 上任取一个数 ,则圆与 圆有公共点的概率为( B ) A. B. C. D. 11.已知是方程的两根,则等于( C ) A. B. C. D. 12.使函数 是奇函数,且在 上是减函数的 的一个值是( B ) A B C D 二.填空题(每小题5分,共4小题) 13.求值: 14 14.在圆中,等于半径长的弦长所对的圆心角的弧度数是______. 15.已知平面上三点A、B、C满足,,,则的值等于 . 100 16.对下列命题:①函数是奇函数; ②直线是函数 图像的一条对称轴;③函数的图象关于点成中心对称图形; ④存在实数,使得. 其中正确的序号为____①②____.(填所有正确的序号) 三.解答题(共70分) 17.(本小题满分10分) 随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图(中间的数字表示身高的百位、十位数,旁边的数字分别表示身高的个位数)如图所示. (Ⅰ)根据茎叶图判断哪个班的平均身高较高; (Ⅱ)计算甲班的样本方差. 18解:(Ⅰ) 由茎叶图可知乙班平均身高, 甲班的平均身高 ………4分 所以乙班的平均身高较高.………5分 14 (Ⅱ)甲班的方差为:[(182-170)2+(179-170)2+(178-170)2+(171-170)2+(170-170)2+(168-170)2+(168-170)2+(164-170)2+(162-170)2+(158-170)2]=54.2……………10分 18.(本小题满分12分) 已知定义在上的函数. (Ⅰ)求的单调递增区间; (Ⅱ)若方程只有一解,求实数的取值范围. 解:(Ⅰ) 化简得 ……………1分 其递增区间满足,………① 又定义域为…………② 由①②知递增区间应满足: ……………5分 故所求递增区间为 …………6分 (Ⅱ)在同一坐标系中作出与的图象, 方程只有一解两函数图象只能有一个交点, 所以的取值范围是:………12分 19.(本小题满分12分) 已知平面内三点、、,若, 求的值. 14 解:, ……………… 3分 由得 ………… 5分 化间得 ……………… 8分 ……………… 10分 所以…………12分 20.(本小题满分12分) 某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150)后得到 如下部分频率分布直方图. 观察图形的信息,回答下列问题: (Ⅰ)求分数在[120,130)内的频率; (Ⅱ)若在同一组数据中,将该组 区间的中点值(如:组区间[100,110)的 中点值为=105.)作为这组数 据的平均分,据此,估计本次考试的平均分; (Ⅲ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率. 解:(Ⅰ) 分数在[120,130)内的频率为: 1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3………………2分 (Ⅱ)估计平均分为 =95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121……5分 14 (Ⅲ)由题意,[110,120)分数段的人数为60×0.15=9(人) ………………6分 [120,130)分数段的人数为60×0.3=18(人) ………………7分 ∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本, ∴需在[110, 120)分数段内抽取2人,并分别记为m,n ………………8分 在[120, 130)分数段内抽取4人,并分别记为a,b,c,d ………………9分 设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A, 则基本事件共有(m,n),(m,a),…,(m,d),(n,a),…,(n,d),(a,b),…,(c,d)共15种. 则事件A包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),(n,a), (n,b),(n,c),(n,d)共9种. ∴P(A)== ………………12分 21.(本小题满分12分) 已知,,,. (1)求的值; (2)求的值. 解(1)由题知:, 故 ………………6分 (2)因为所以,又,故 从而 14 12分 22.(本小题满分12分) 已知向量,设函数且的最小正周期为. (1)求的单调递增区间; (2)先将函数的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,然后将图象向下平移个单位,得到函数的图象,求函数在区间上上的取值范围. 解:(1) …………………………………………………………(3分) ……………………………(4分) 由得: 故的单调递增区间是………………(6分) (2) …………………………………………(9分) ………………………(11分) 14 ,即的取值范围为…………………………(12分) 14查看更多