- 2021-06-24 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018届二轮复习选考系列:坐标系学案(全国通用)
坐标系 【考点梳理】 1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换φ:的作用下,点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换. 2.极坐标系与点的极坐标 (1)极坐标系:如图1所示,在平面内取一个定点O(极点),自极点O引一条射线Ox(极轴);再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 图1 (2)极坐标:平面上任一点M的位置可以由线段OM的长度ρ和从Ox到OM的角度θ 刻画,这两个数组成的有序数对(ρ,θ)称为点M的极坐标.其中ρ称为点M的极径,θ称为点M的极角. 3.极坐标与直角坐标的互化 点M 直角坐标(x,y) 极坐标(ρ,θ) 互化公式 ρ2=x2+y2 tan θ=(x≠0) 4.圆的极坐标方程 曲线 图形 极坐标方程 圆心在极点,半径为r的圆 ρ=r(0≤θ<2π) 圆心为(r,0),半径为r的圆 ρ=2rcos_θ 圆心为,半径为r的圆 ρ=2rsin_θ(0≤0<π) 5.直线的极坐标方程 (1)直线l过极点,且极轴到此直线的角为α,则直线l的极坐标方程是θ=α(ρ∈R). (2)直线l过点M(a,0)且垂直于极轴,则直线l的极坐标方程为ρcos θ=a. (3)直线过M且平行于极轴,则直线l的极坐标方程为ρsin_θ=b(0<θ<π). 【考点突破】 考点一、平面直角坐标系中的伸缩变换 【例1】将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原 的2倍,得曲线C. (1)求曲线C的方程; (2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程. [解析] (1)设(x1,y1)为圆上的点,在已知变换下变为曲线C上的点(x,y),依题意,得 由x+y=1得x2+2=1, 故曲线C的方程为x2+=1. (2)由解得或 不妨设P1(1,0),P2(0,2),则线段P1P2的中点坐标为,所求直线斜率为k=, 于是所求直线方程为y-1=, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=. 【类题通法】 1.解答该类问题应明确两点:一是根据平面直角坐标系中的伸缩变换公式的意义与作用;二是明确变换前的点P(x,y)与变换后的点P′(x′,y′)的坐标关系,利用方程思想求解. 2.求交点坐标,得直线方程,最后化为极坐标方程,其实质是将x=ρcos θ,y=ρsin θ代入转化. 【对点训练】 在平面直角坐标系中,已知伸缩变换φ: (1)求点A经过φ变换所得点A′的坐标; (2)求直线l:y=6x经过φ变换后所得直线l′的方程. [解析] (1)设点A′(x′,y′),由伸缩变换 φ:得 ∴x′=×3=1,y′==-1.∴点A′的坐标为(1,-1). (2)设P′(x′,y′)是直线l′上任意一点. 由伸缩变换φ:得 代入y=6x,得2y′=6·=2x′, ∴y′=x′为所求直线l′的方程. 考点二、极坐标与直角坐标的互化 【例2】在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系. (1)求C1,C2的极坐标方程; (2)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积. [解析] (1)因为x=ρcos θ,y=ρsin θ,所以C1的极坐标方程为ρcos θ=-2,C2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=代入ρ2-2ρcos θ-4ρsin θ+4=0,得 ρ2-3ρ+4=0,解得ρ1=2,ρ2=. 故ρ1-ρ2=,即|MN|=. 由于C2的半径为1,所以△C2MN的面积为. 【变式1】若本例条件不变,求直线C1与C2的交点的极坐标. [解析]联立方程 解得θ=且ρ=-2. 所以交点的极坐标为. 【变式2】本例条件不变,求圆C2关于极点的对称圆的方程. [解析]因为点(ρ,θ)与点(-ρ,θ)关于极点对称, 设点(ρ,θ)为对称圆上任意一点,则(-ρ,θ)在圆C2上, 所以(-ρ)2+2ρcos θ+4ρsin θ+4=0. 故所求圆C2关于极点的对称圆的方程为x2+y2+2x+4y+4=0. 【类题通法】 1.进行极坐标方程与直角坐标方程互化的关键是灵活应用互化公式:x=ρcos θ,y=ρsin θ,ρ2=x2+y2,tan θ=(x≠0). 2.进行极坐标方程与直角坐标方程互化时,要注意ρ,θ的取值范围及其影响;要善于对方程进行合理变形,并重视公式的逆向与变形使用;要灵活运用代入法和平方法等方法. 【对点训练】 在极坐标系中,已知极坐标方程C1:ρcos θ-ρsin θ-1=0,C2:ρ=2cos θ. (1)求曲线C1,C2的直角坐标方程,并判断两曲线的形状; (2)若曲线C1,C2交于A,B两点,求两交点间的距离. [解析] (1)由C1:ρcos θ-ρsin θ-1=0, ∴x-y-1=0,表示一条直线. 由C2:ρ=2cos θ,得ρ2=2ρcos θ, ∴x2+y2=2x,则(x-1)2+y2=1. ∴C2是圆心为(1,0),半径r=1的圆. (2)由(1)知点(1,0)在直线x-y-1=0上, 因此直线C1过圆C2的圆心. ∴两交点A,B的连线段是圆C2的直径. 因此两交点A,B间的距离|AB|=2r=2. 考点三、直线与圆的极坐标方程的应用 【例3】在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ. (1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程; (2)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a. [解析] (1)消去参数t得到C1的普通方程为x2+(y-1)2=a2,则C1是以(0,1)为圆心,a为半径的圆. 将x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0. (2)曲线C1,C2的公共点的极坐标满足方程组 若ρ≠0,由方程组得16cos2θ-8sin θcos θ+1-a2=0, 由已知tan θ=2,得16cos2θ-8sin θcos θ=0, 从而1-a2=0,解得a=-1(舍去)或a=1. 当a=1时,极点也为C1,C2的公共点,且在C3上. 所以a=1. 【类题通法】 1.第(1)问将曲线C1的参数方程先化为普通方程,再化为极坐标方程,考查 生的化归与转化能力.第(2)问中关键是理解极坐标方程,有意识地将问题简单化,进而求解. 2.由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标方程解决,可先转化为直角坐标方程,然后求解. 【对点训练】 已知曲线C1:x+y=和C2:(φ为参数).以原点O为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位. (1)把曲线C1和C2的方程化为极坐标方程; (2)设C1与x,y轴交于M,N两点,且线段MN的中点为P.若射线OP与C1,C2交于P,Q两点,求P,Q两点间的距离. [解析] (1)曲线C1化为ρcos θ+ρsin θ=. ∴ρsin=. 曲线C2化为+=1.(*) 将x=ρcos θ,y=ρsin θ代入(*)式 得cos2θ+sin2θ=1,即ρ2(cos2θ+3sin2θ)=6. ∴曲线C2的极坐标方程为ρ2=. (2)∵M(,0),N(0,1),∴P, ∴OP的极坐标方程为θ=, 把θ=代入ρsin=得ρ1=1,P. 把θ=代入ρ2=得ρ2=2,Q. ∴|PQ|=|ρ2-ρ1|=1,即P,Q两点间的距离为1.查看更多