【数学】2019届一轮复习人教A版随机事件的概率(1)学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2019届一轮复习人教A版随机事件的概率(1)学案

‎10.4 随机事件的概率 ‎[知识梳理]‎ ‎1.事件的分类 ‎2.频率和概率 ‎(1)在相同的条件S下重复n次实验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.‎ ‎(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率.‎ ‎3.事件的关系与运算 ‎4.概率的几个基本性质 ‎(1)概率的取值范围:0≤P(A)≤1.‎ ‎(2)必然事件的概率P(E)=1.‎ ‎(3)不可能事件的概率P(F)=0.‎ ‎(4)概率的加法公式 如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).‎ ‎(5)对立事件的概率 若事件A与事件B互为对立事件,则P(A)=1-P(B).‎ ‎[诊断自测]‎ ‎1.概念思辨 ‎(1)若事件A,B,C两两互斥,则P(A)+P(B)+P(C)=1.(  )‎ ‎(2)在大量重复试验中,概率是频率的稳定值.(  )‎ ‎(3)由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.(  )‎ ‎(4)事件A的对立事件所含的结果组成的集合,是全集中由事件A所含结果组成集合的补集.(  )‎ 答案 (1)× (2)√ (3)√ (4)√‎ ‎2.教材衍化 ‎(1)(必修A3P113T1)下列事件中不可能事件的个数为(  )‎ ‎①如果a>b,c>d,则a-d>b-c;②对某中学的毕业生进行一次体检,每个学生的身高都超过‎2 m;③某电视剧收视率为40%;④从10个玻璃杯(其中8个正品,2个次品)中,任取2个,2个都是次品;⑤在不受外力作用的条件下,做匀速直线运动的物体改变其匀速直线运动状态.‎ A.1 B.‎2 C.3 D.4‎ 答案 B 解析 ①是必然事件;②⑤是不可能事件;③④是随机事件.故选B.‎ ‎(2)(必修A3P‎124A组T6)一袋中装有100个除颜色不同外其余均相同的红球、白球、黑球,从中任取一球,摸出红球、白球的概率分别为0.40和0.35,那么黑球共有________个.‎ 答案 25‎ 解析 设红球、白球各有x个和y个,则解得所以黑球的个数为100-40-‎ ‎35=25.‎ ‎3.小题热身 ‎(1)(2015·广东高考)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为(  )‎ A.0.4 B.‎0.6 C.0.8 D.1‎ 答案 B 解析 记3件合格品分别为A1,A2,A3,2件次品分别为B1,B2,从5件产品中任取2件,有(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共10种可能.其中恰有一件次品有6种可能,由古典概型概率公式得所求事件概率为=0.6.故选B.‎ ‎(2)(2017·浙江瑞安中学高三月考)一颗正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,现将这颗骰子抛掷三次,观察向上的点数,则三次点数之和等于15的概率为________.‎ 答案  解析 将这颗骰子抛掷三次,共63=216(种)情况.而三次点数之和等于15的有10个(555共1个,456共6个,366共3个).所以三次点数之和等于15的概率P==.‎ 题型1 随机事件   某县城有甲、乙两种报纸供居民订阅,记事件A为“只订甲报”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报”,事件E为“一种报纸也不订”.判断下列事件是不是互斥事件;如果是,再判断它们是不是对立事件:‎ ‎(1)A与C;(2)B与E;(3)B与C;(4)C与E.‎ 用集合的观点分析.A∩B=∅为互斥事件,A∩B=∅且 A∪B=U为对立事件.‎ 解 (1)由于事件C“至多订一种报纸”中包括“只订甲报”,即事件A与事件C有可能同时发生,故A与C不是互斥事件.‎ ‎(2)事件B“至少订一种报纸”与事件E“一种报纸也不订”是不可能同时发生的,故事件B与E是互斥事件;由于事件B发生会导致事件E一定不发生,且事件E发生会导致事件B一定不发生,故B与E还是对立事件.‎ ‎(3)事件B“至少订一种报纸”中有这些可能:“只订甲报纸”“只订乙报纸”“订甲、乙两种报纸”,事件C“至多订一种报纸”中有这些可能:“一种报纸也不订”“只订甲报纸”“只订乙报纸”,由于这两个事件可能同时发生,故B与C不是互斥事件.‎ ‎(4)由(3)的分析,事件E“一种报纸也不订”是事件C的一种可能,即事件C与事件E有可能同时发生,故C与E不是互斥事件.‎ 方法技巧 ‎1.准确把握互斥事件与对立事件的概念 ‎(1)互斥事件是不可能同时发生的事件,但可以同时不发生.‎ ‎(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.见典例.‎ ‎2.判别互斥、对立事件的方法 判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.见典例.‎ 冲关针对训练 口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1个黄球”,C=“取出的2球至少有1个白球”,D=“取出的2球不同色”,‎ E=“取出的2球中至多有1个白球”.下列判断中正确的序号为________.‎ ‎①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C∪E)=1;⑤P(B)=P(C).‎ 答案 ①‎ 解析 当取出的2个球中一黄一白时,B与C都发生,②不正确.当取出的2个球中恰有一个白球时,事件C与E都发生,则③不正确.显然A与D是对立事件,①正确;C∪E不一定为必然事件,P(C∪E)≤1,④不正确.由于P(B)=,P(C)=,所以⑤不正确.‎ 题型2 随机事件的频率与概率   (2016·全国卷Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:‎ 上年度出 险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:‎ 出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 频数 ‎60‎ ‎50‎ ‎30‎ ‎30‎ ‎20‎ ‎10‎ ‎(1)记A为事件:“一续保人本年度的保费不高于基本保费”.求 P(A)的估计值;‎ ‎(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;‎ ‎(3)求续保人本年度平均保费的估计值.‎ 采用公式法fn(A)=.‎ 解 (1)事件A发生当且仅当一年内出险次数小于2.‎ 由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.‎ ‎(2)事件B发生当且仅当一年内出险次数大于1且小于4.‎ 由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.‎ ‎(3)由所给数据得 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 频率 ‎0.30‎ ‎0.25‎ ‎0.15‎ ‎0.15‎ ‎0.10‎ ‎0.05‎ 调查的200名续保人的平均保费为 ‎0.‎85a×0.30+a×0.25+‎1.25a×0.15+‎1.5a×0.15+‎1.75a×0.10+‎2a×0.05=‎1.1925a.‎ 因此,续保人本年度平均保费的估计值为‎1.1925a.‎ ‎[结论探究1] 若本例条件不变,结论变为“试求一续保人本年度的保费高于基本保费的估计值”.‎ 解 1-=0.45或=0.45.‎ ‎[结论探究2] 若本例条件不变,结论变为“试求一续保人本年度的保费不低于基本保费的估计值”.‎ 解 1-=0.7或=0.7.‎ 方法技巧 ‎1.计算简单随机事件频率或概率的解题思路 ‎(1)计算出所求随机事件出现的频数及总事件的频数.‎ ‎(2)由频率与概率的关系得所求.‎ ‎2.求解以统计图表为背景的随机事件的频率或概率问题的关键点 求解该类问题的关键,由所给频率分布表,频率分布直方图或茎叶图等图表,计算出所求随机事件出现的频数,进而利用频率与概率的关系得所求.‎ 冲关针对训练 ‎(2018·福建基地综合测试)某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.‎ ‎(1)若商店一天购进该商品10件,求日利润y(单位:元)关于日需求量n(单位:件,n∈N)的函数解析式;‎ ‎(2)商店记录了50天该商品的日需求量n(单位:件),整理得下表:‎ 日需求量n ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ 频数 ‎9‎ ‎11‎ ‎15‎ ‎10‎ ‎5‎ ‎①假设该店在这50天内每天购进10件该商品,求这50‎ 天的日利润(单位:元)的平均数;‎ ‎②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求日利润在区间[400,550]内的概率.‎ 解 (1)当日需求量n≥10时,‎ 日利润为y=50×10+(n-10)×30=30n+200,‎ 当日需求量n<10时,‎ 利润y=50×n-(10-n)×10=60n-100.‎ 所以日利润y与日需求量n的函数解析式为 y= ‎(2)50天内有9天获得的日利润为380元,有11天获得的日利润为440元,有15天获得日利润为500元,有10天获得的日利润为530元,有5天获得的日利润为560元.‎ 所以 ‎①这50天的日利润(单位:元)的平均数为 ‎=477.2.‎ ‎②日利润(单位:元)在区间[400,550]内的概率为 P==.‎ 题型3 互斥事件与对立事件的概率   (2014·陕西高考)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:‎ 赔付金额(元)‎ ‎0‎ ‎1000‎ ‎2000‎ ‎3000‎ ‎4000‎ 车辆数(辆)‎ ‎500‎ ‎130‎ ‎100‎ ‎150‎ ‎120‎ ‎(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;‎ ‎(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.‎ 解 (1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,以频率估计概率得 P(A)==0.15,P(B)==0.12.‎ 由于投保金额为2800元,赔付金额大于投保金额对应的情形是3000元和4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.‎ ‎(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,知样本车辆中车主为新司机的有0.1×1000=100辆,而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24辆,所以样本车辆中新司机车主获赔金额为4000元的频率为=0.24,由频率估计概率得P(C)=0.24.‎ 方法技巧 求复杂的互斥事件的概率的两种方法 ‎1.直接求解法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率求和公式计算.‎ ‎2.间接求法:先求此事件的对立事件的概率,再用公式P(A)=1-P(),即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法就显得较简便.‎ 提醒:间接法体现了“正难则反”的思想方法.‎ 冲关针对训练 经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:‎ 排队人数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5人及5人以上 概率 ‎0.1‎ ‎0.16‎ ‎0.3‎ ‎0.3‎ ‎0.1‎ ‎0.04‎ 求:(1)至多2人排队等候的概率;‎ ‎(2)至少3人排队等候的概率.‎ 解 记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.‎ ‎(1)记“至多2人排队等候”为事件G,‎ 则G=A+B+C,所以P(G)=P(A+B+C)‎ ‎=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.‎ ‎(2)解法一:记“至少3人排队等候”为事件H,则 H=D+E+F,所以P(H)=P(D+E+F)‎ ‎=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.‎ 解法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.‎ ‎1.(2016·天津高考)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为(  )‎ A. B. C. D. 答案 A 解析 设“两人下成和棋”为事件A,“甲获胜”为事件B.事件 A与B是互斥事件,所以甲不输的概率P=P(A+B)=P(A)+P(B)=+=,故选A.‎ ‎2.(2018·湖南衡阳八中模拟)从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为(  )‎ A.0.7 B.‎0.65 C.0.35 D.0.3‎ 答案 C 解析 ∵事件A={抽到一等品},且P(A)=0.65,∴事件“抽到的产品不是一等品”的概率P=1-P(A)=1-0.65=0.35.故选C.‎ ‎3.(2014·全国卷Ⅰ)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.‎ 答案  解析 设2本不同的数学书为a1,a2,1本语文书为b,在书架上的排法有a‎1a2b,a1ba2,a‎2a1b,a2ba1,ba‎1a2,ba‎2a1,共6种,其中2本数学书相邻的有a‎1a2b,a‎2a1b,ba‎1a2,ba‎2a1,共4种,因此2本数学书相邻的概率P==.‎ ‎4.(2017·安徽池州模拟)小明忘记了微信登录密码的后两位,只记得最后一位是字母A,a,B,b中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.‎ 答案  解析 小明输入密码后两位的所有情况为(4,A),(4,a),(4,B),(4,b),(5,A),(5,a),(5,B),(5,b),(6,A),(6,a),(6,B),(6,b),共12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是.‎ ‎ [基础送分 提速狂刷练]‎ 一、选择题 ‎1.(2017·湖南十三校二模)同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为(  )‎ A. B. C. D. 答案 B 解析 分别记《爱你一万年》《十年》《父亲》《单身情歌》为A1,A2,A3,A4,从这四首歌中选出两首歌进行表演的所有可能结果为A‎1A2,A‎1A3,A‎1A4,A‎2A3,A‎2A4,A‎3A4,共6个,其中A1未被选取的结果有3个,所以所求概率P==.故选B.‎ ‎2.(2018·广东中山模拟)从1,2,3,4,5这5个数中任取两个,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数,上述事件中,是对立事件的是(  )‎ A.① B.②④ C.③ D.①③‎ 答案 C 解析 从1,2,3,4,5这5个数中任取两个,有三种情况:一奇一偶,两个奇数,两个偶数.其中至少有一个是奇数包含一奇一偶,两个奇数这两种情况,它与两个都是偶数是对立事件,而①②④中的事件可能同时发生,不是对立事件,故选C.‎ ‎3.(2017·安徽“江南十校”联考)从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是(  )‎ A. B. C. D. 答案 D 解析 令选取的a,b组成实数对(a,b),则有CC=15种情况,其中b>a的有(1,2),(1,3),(2,3)3种情况,所以b>a的概率为=.故选D.‎ ‎4.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,向量m=(a,b),n=(1,2),则向量m与向量n不共线的概率是(  )‎ A. B. C. D. 答案 B 解析 若m与n共线,则‎2a-b=0.而(a,b)的可能性情况为6×6=36个.符合‎2a=b的有(1,2),(2,4),(3,6)共三个.故共线的概率是=,从而不共线的概率是1-=.故选B.‎ ‎5.一个袋子里装有编号为1,2,…,12的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是(  )‎ A. B. C. D. 答案 B 解析 据题意由于是有放回地抽取,故共有12×12=144种取法,其中两次取到红球且至少有一次号码是偶数的情况共有6×6-3×3=27种可能,故其概率为=.故选B.‎ ‎6.(2018·湖南常德模拟)现有一枚质地均匀且表面分别标有1,2,3,4,5,6的正方体骰子,将这枚骰子先后抛掷两次,这两次出现的点数之和大于点数之积的概率为(  )‎ A. B. C. D. 答案 D 解析 将这枚骰子先后抛掷两次的基本事件总数为6×6=36(个),这两次出现的点数之和大于点数之积包含的基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),共11个.‎ ‎∴这两次出现的点数之和大于点数之积的概率P=.故选D.‎ ‎7.(2018·安徽黄山模拟)从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是(  )‎ A. B. C. D. 答案 A 解析 从1,2,3,4,5这5个数中任取3个不同的数的基本事件有C=10个,取出的3个数可作为三角形的三边边长的基本事件有(2,3,4),(2,4,5),(3,4,5),共3个,故所求概率P=.故选A.‎ ‎8.(2018·河南开封月考)有5张卡片,上面分别写有数字1,2,3,4,5.从这5张卡片中随机抽取2张,那么取出的2张卡片上的数字之积为偶数的概率为(  )‎ A. B. C. D. 答案 C 解析 从5张卡片中随机抽取2张共有C=10种等可能情况;2张卡片上的数字之积为偶数的为1奇1偶和2偶,共有CC+C=7种等可能情况,故所求概率为P=.故选C.‎ ‎9.(2018·广东海珠综合测试)某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买该食品4袋,能获奖的概率为(  )‎ A. B. C. D. 答案 C 解析 因为3种不同的精美卡片随机放进4袋食品中,根据分步乘法计数原理可知共有34=81种不同放法,4袋食品中共有3种不同的卡片的放法有3×C×A=36种,根据等可能事件的概率公式得能获奖的概率为=,故选C.‎ ‎10.(2017·湖南郴州三模)从集合A={-2,-1,2}中随机抽取一个数记为a,从集合B={-1,1,3}中随机抽取一个数记为b,则直线ax-y+b=0不经过第四象限的概率为(  )‎ A. B. C. D. 答案 A 解析 (a,b)所有可能的结果为CC=9种.‎ 由ax-y+b=0得y=ax+b,当时,直线不经过第四象限,符合条件的(a,b)的结果为(2,1),(2,3),共2种,∴直线ax-y+b=0不经过第四象限的概率P=,故选A.‎ 二、填空题 ‎11.(2017·陕西模拟)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________.‎ 答案  解析 如图,从A,B,C,D,O这5个点中任取2个,共有C =10种取法,满足两点间的距离不小于正方形边长的取法有(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6种,因此所求概率P==.‎ ‎12.(2017·云南昆明质检)中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为________.‎ 答案  解析 由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为+=.‎ ‎13.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为,取得两个绿球的概率为,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.‎ 答案   解析 (1)由于“取得两个红球”与“取得两个绿球”是互斥事件,因此事件C“取得两个同色球”,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P(C)=+=.‎ ‎(2)由于事件A“至少取得一个红球”与事件B“取得两个绿球”是对立事件,则至少取得一个红球的概率为P(A)=1-P(B)=1-=‎ eq f(14,15).‎ ‎14.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:‎ ‎907 966 191 925 271 932 812 458 569 683‎ ‎431 257 393 027 556 488 730 113 537 989‎ 据此估计,该运动员三次投篮恰有两次命中的概率为________.‎ 答案 0.25‎ 解析 20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.‎ 三、解答题 ‎15.(2018·扬州模拟)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.‎ 已知这100位顾客中一次购物量超过8件的顾客占55%.‎ ‎(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;‎ ‎(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(‎ 将频率视为概率)‎ 解 (1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.‎ 该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为 =1.9(分钟).‎ ‎(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)==,P(A2)==.‎ P(A)=1-P(A1)-P(A2)=1--=.‎ 故一位顾客一次购物的结算时间不超过2分钟的概率为.‎ ‎16.(2015·北京高考)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.‎ ‎(1)估计顾客同时购买乙和丙的概率;‎ ‎(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;‎ ‎(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?‎ 解 (1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为=0.2.‎ ‎(2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.‎ 所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为=0.3.‎ ‎(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为=‎ ‎0.2,顾客同时购买甲和丙的概率可以估计为=0.6,顾客同时购买甲和丁的概率可以估计为=0.1.‎ 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.‎
查看更多

相关文章

您可能关注的文档