- 2021-06-24 发布 |
- 37.5 KB |
- 17页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018届二轮复习函数的应用学案文(全国通用)
专题03 函数的应用 求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力. 1.函数的零点与方程的根 (1)函数的零点 对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点. (2)函数的零点与方程根的关系 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标. (3)零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0, 这个c也就是方程f(x)=0的根. 注意以下两点: ①满足条件的零点可能不唯一; ②不满足条件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解. 2.应用函数模型解决实际问题的一般程序 ⇒⇒⇒ 与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答. 3.在求方程解的个数或者根据解的个数求方程中的字母参数的范围的问题时,数形结合是基本的解题方法,即把方程分拆为一个等式,使两端都转化为我们所熟悉的函数的解析式,然后构造两个函数f(x),g(x),即把方程写成f(x)=g(x)的形式,这时方程根的个数就是两个函数图象交点的个数,可以根据图象的变化趋势找到方程中字母参数所满足的各种关系. 考点一 函数的零点判断 例1、(1)函数f(x)=ex+x-2的零点所在的区间是( ) A. B. C.(1,2) D.(2,3) (2)已知偶函数y=f(x),x∈R满足:f(x)=x2-3x(x≥0),若函数g(x)=则y=f(x)-g(x)的零点个数为( ) A.1 B.3 C.2 D.4 【答案】(1)B (2)B 【方法技巧】函数零点的求法 (1)判断函数在某个区间上是否存在零点,要根据具体题目灵活处理.当能直接求出零点时,就直接求出进行判断;当不能直接求出时,可根据零点存在性定理判断;当用零点存在性定理也无法判断时可画出图象判断. (2)已知函数的零点个数求解参数范围,可以利用数形结合思想转化为函数图象交点个数;也可以利用函数方程思想,构造关于参数的方程或不等式进行求解. (3)对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点. 【变式探究】设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) 【解析】选B 法一:∵f(1)=ln 1+1-2=-1<0, f(2)=ln 2>0, ∴f(1)·f(2)<0, ∵函数f(x)=ln x+x-2的图象是连续的, ∴函数f(x)的零点所在的区间是(1,2). 法二:函数f(x)的零点所在的区间转化为函数g(x)=ln x,h(x)=-x+2图象交点的横坐标所在的范围,如图所示,可知f(x)的零点所在的区间为(1,2). 考点二、二次函数的零点 例2、已知函数f(x)=x2+ax+2,a∈R. (1)若不等式f(x)≤0的解集为[1,2],求不等式f(x)≥1-x2的解集; (2)若函数g(x)=f(x)+x2+1在区间(1,2)上有两个不同的零点,求实数a的取值范围. 解得-51; (2)若关于的方程+=0的解集中恰有一个元素,求的值; (3)设>0,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围. 【答案】(1).(2)或.(3). 【解析】 即,对任意成立. 因为,所以函数在区间上单调递增, 所以时,有最小值,由,得. 故的取值范围为. 1.【2015高考安徽,文14】在平面直角坐标系中,若直线与函数 的图像只有一个交点,则的值为 . 【答案】 【解析】在同一直角坐标系内,作出的大致图像,如下图: 由题意,可知 2.【2015高考湖北,文13】函数的零点个数为_________. 【答案】2. 3.【2015高考湖南,文14】若函数有两个零点,则实数的取值范围是_____. 【答案】 4.【2015高考山东,文10】设函数,若,则 ( ) (A) (B) (C) (D) 【答案】D 【解析】由题意,由得,或,解得,故选D. 5.【2015高考上海,文21】(本小题14分)本题共2小题,第1小题6分,第2小题8分. 如图,三地有直道相通,千米,千米,千米.现甲、乙两警员同时从地出发匀速前往地,经过小时,他们之间的距离为(单位:千米).甲的路线是,速度为5千米/小时,乙的路线是,速度为8千米/小时.乙到达地后原地等待.设时乙到达地. (1)求与的值; (2)已知警员的对讲机的有效通话距离是3千米.当时,求的表达式,并判断在上得最大值是否超过3?说明理由. 【答案】(1),千米;(2)超过了3千米. 所以. 所以当 时,,故的最大值超过了3千米. 6.【2015高考四川,文8】某食品的保鲜时间(单位:小时)与储藏温度(单位:℃)满足函数关系(为自然对数的底数,为常数).若该食品在℃的保鲜时间是小时,在℃的保鲜时间是小时,则该食品在℃的保鲜时间是( ) (A)16小时 (B)20小时 (C)24小时 (D)21小时 【答案】C 【解析】由题意,得,于是当x=33时,y=e33k+b=(e11k)3·eb=×192=24(小时) 1.(2014·湖南卷)已知函数f(x)=x2+ex-(x<0)与g(x)=x2+ln(x+a)的图像上存在关于y轴对称的点,则a的取值范围是( ) A.(-∞,) B.(-∞,) C. D. 【答案】B 2.(2014·天津卷)已知函数f(x)=|x2+3x|,x∈R.若方程f(x)-a|x-1|=0恰有4个互异的实数根,则实数a的取值范围为________. 【答案】(0,1)∪(9,+∞) 【解析】在同一坐标系内分别作出y=f(x)与y=a|x-1|的图像如图所示.当y=a|x-1|与y=f(x)的图像相切时,由整理得x2+(3-a)x+a=0,则Δ=(3-a)2-4a=a2-10a+9=0,解得a=1或a=9.故当y=a|x-1|与y=f(x)的图像有四个交点时,09. 3.(2014·浙江卷)已知函数f(x)=x3+ax2+bx+c,且0查看更多