- 2021-06-24 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2018届一轮复习人教A版第6章第5节直接证明与间接证明学案
第五节 直接证明与间接证明 1.直接证明 内容 综合法 分析法 定义 利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立 从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件 思维过程 由因导果 执果索因 框图表示 → →…→ →→…→ 书写格式 因为…,所以…或由…,得… 要证…,只需证…,即证… 2.间接证明 反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法. 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)综合法的思维过程是由因导果,逐步寻找已知的必要条件.( ) (2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (3)用反证法证明时,推出的矛盾不能与假设矛盾.( ) (4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( ) [答案] (1)√ (2)× (3)× (4)√ 2.要证明+<2,可选择的方法有以下几种,其中最合理的是( ) A.综合法 B.分析法 C.反证法 D.归纳法 B [要证明+<2成立,可采用分析法对不等式两边平方后再证明.] 3.用反证法证明命题:“已知a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是( ) A.方程x2+ax+b=0没有实根 B.方程x2+ax+b=0至多有一个实根 C.方程x2+ax+b=0至多有两个实根 D.方程x2+ax+b=0恰好有两个实根 A [“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根”,故选A.] 4.已知a,b,x均为正数,且a>b,则与的大小关系是__________. > [∵-=>0, ∴>.] 5.(教材改编)在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,则△ABC的形状为__________三角形. 等边 [由题意2B=A+C, 又A+B+C=π,∴B=,又b2=ac, 由余弦定理得b2=a2+c2-2accos B=a2+c2-ac, ∴a2+c2-2ac=0,即(a-c)2=0,∴a=c, ∴A=C,∴A=B=C=,∴△ABC为等边三角形.] 综合法 已知正方体ABCDA1B1C1D1中,E,F分别为D1C1,C1B1的中点, AC∩BD=P,A1C1∩EF=Q.求证: (1)D,B,F,E四点共面; (2)若A1C交平面DBFE于R点,则P,Q,R三点共线. [证明] (1)如图所示,因为EF是△D1B1C1的中位线, 所以EF∥B1D1.2分 在正方体ABCDA1B1C1D1中,B1D1∥BD,所以EF∥BD,4分 所以EF,BD确定一个平面, 即D,B,F,E四点共面.6分 (2)在正方体ABCDA1B1C1D1中,设平面A1ACC1确定的平面为α, 又设平面BDEF为β. 因为Q∈A1C1,所以Q∈α. 又Q∈EF,所以Q∈β, 则Q是α与β的公共点.10分 同理,P点也是α与β的公共点.13分 所以α∩β=PQ. 又A1C∩β=R, 所以R∈A1C,则R∈α且R∈β, 则R∈PQ,故P,Q,R三点共线.15分 [规律方法] 综合法是“由因导果”的证明方法,其逻辑依据是三段论式的演绎推理方法,常与分析法结合使用,用分析法探路,综合法书写,但要注意有关定理、性质、结论题设条件的正确运用. [变式训练1] 已知函数f(x)=ln(1+x),g(x)=a+bx-x2+x3,函数y=f(x)与函数y=g(x)的图象在交点(0,0)处有公共切线. (1)求a,b的值; (2)证明:f(x)≤g(x). 【导学号:51062204】 [解] (1)f′(x)=,g′(x)=b-x+x2,2分 由题意得 解得a=0,b=1.7分 (2)证明:令h(x)=f(x)-g(x) =ln(x+1)-x3+x2-x(x>-1). h′(x)=-x2+x-1=.12分 所以h(x)在(-1,0)上为增函数,在(0,+∞)上为减函数. h(x)max=h(0)=0,h(x)≤h(0)=0,即f(x)≤g(x).15分 分析法 已知a>0,求证:-≥a+-2. [证明] 要证-≥a+-2, 只需要证+2≥a++.4分 因为a>0,故只需要证2≥2, 即a2++4+4≥a2+2++2+2,10分 从而只需要证2≥, 只需要证4≥2, 即a2+≥2,而上述不等式显然成立,故原不等式成立.15分 [规律方法] 1.当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法. 2.分析法的特点和思路是“执果索因”,逐步寻找结论成立的充分条件,即从“未知”看“需知”,逐步靠拢“已知” 或本身已经成立的定理、性质或已经证明成立的结论等,通常采用“欲证—只需证—已知”的格式,在表达中要注意叙述形式的规范性. [变式训练2] 已知△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c. 求证:+=. [证明] 要证+=, 即证+=3,也就是+=1,3分 只需证c(b+c)+a(a+b)=(a+b)(b+c), 需证c2+a2=ac+b2,8分 又△ABC三内角A,B,C成等差数列,故B=60°, 由余弦定理,得 b2=c2+a2-2accos 60°,13分 即b2=c2+a2-ac,故c2+a2=ac+b2成立. 于是原等式成立.15分 反证法 设{an}是公比为q的等比数列. (1)推导{an}的前n项和公式; (2)设q≠1,证明数列{an+1}不是等比数列. [解] (1)设{an}的前n项和为Sn, 当q=1时,Sn=a1+a1+…+a1=na1; 当q≠1时,Sn=a1+a1q+a1q2+…+a1qn-1,① qSn=a1q+a1q2+…+a1qn,② ①-②得,(1-q)Sn=a1-a1qn, ∴Sn=,∴Sn=7分 (2)证明:假设{an+1}是等比数列,则对任意的k∈N*, (ak+1+1)2=(ak+1)(ak+2+1), a+2ak+1+1=akak+2+ak+ak+2+1, aq2k+2a1qk=a1qk-1·a1qk+1+a1qk-1+a1qk+1.12分 ∵a1≠0,∴2qk=qk-1+qk+1.∵q≠0,∴q2-2q+1=0, ∴q=1,这与已知矛盾. ∴假设不成立,故{an+1}不是等比数列.15分 [规律方法] 用反证法证明问题的步骤: (1)反设:假定所要证的结论不成立,而设结论的反面成立;(否定结论) (2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾,矛盾可以是与已知条件、定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾) (3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立) [变式训练3] 已知a≥-1,求证三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根. 【导学号:51062205】 [证明] 假设三个方程都没有实数根,则 ⇒8分 ∴-ab>b2 C.< D.> B [a2-ab=a(a-b), ∵a0, ∴a2>ab.① 又ab-b2=b(a-b)>0,∴ab>b2,② 由①②得a2>ab>b2.] 4.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证0 B.a-c>0 C.(a-b)(a-c)>0 D.(a-b)(a-c)<0 C [由题意知0 ⇐(a-c)(2a+c)>0⇐(a-c)(a-b)>0.] 5.设x,y,z>0,则三个数+,+,+( ) A.都大于2 B.至少有一个大于2 C.至少有一个不小于2 D.至少有一个不大于2 C [因为x>0,y>0,z>0, 所以++=++≥6, 当且仅当x=y=z时等号成立,则三个数中至少有一个不小于2.] 二、填空题 6.用反证法证明“若x2-1=0,则x=-1或x=1”时,应假设__________. x≠-1且x≠1 [“x=-1或x=1”的否定是“x≠-1且x≠1”.] 7.设a>b>0,m=-,n=,则m,n的大小关系是__________. 【导学号:51062206】 m查看更多