- 2021-06-24 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2021届新高考版高考数学一轮复习精练:§5-1 三角函数的概念、同角三角函数的基本关系及诱导公式(试题部分)
专题五 三角函数与解三角形 【考情探究】 课标解读 考情分析 备考指导 主题 内容 一、三角函数的概念 1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.4.理解同角三角函数的基本关系式.5.能利用单位圆中的三角函数线推导出π2±α、π±α的正弦、余弦、正切的诱导公式. 1.本专题考查的核心素养以数学运算、逻辑推理为主,同时兼顾考查直观想象.2.从近5年高考情况来看,本专题内容为高考必考内容,以中档题为主.几种题型均有可能出现. 1.在备考复习中,注意基础知识的积累,基础概念、定义要弄清楚.2.切实掌握三角函数的图象、性质以及基本变换思想.3.三角函数与解三角形的综合问题,要灵活运用正弦定理或余弦定理.注意方程思想与函数思想的应用. 二、三角恒等变换 1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系. 4.能运用上述公式进行简单的恒等变换. 三、三角函数的图象、性质及应用 1.理解正弦、余弦、正切函数的性质及图象.2.能画y=Asin(ωx+φ)的图象,了解参数A、ω、φ对函数图象变换的影响.3.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 四、解三角形及综合应用 1.掌握正弦定理、余弦定理,并能解决一些简单的解三角形问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的问题. 【真题探秘】 §5.1 三角函数的概念、同角三角函数的基本关系及诱导公式 基础篇固本夯基 【基础集训】 考点 三角函数的概念、同角三角函数的基本关系及诱导公式 1.单位圆中,200°的圆心角所对的弧长为( ) A.10π B.9π C.910π D.109π 答案 D 2.cos 330°=( ) A.12 B.-12 C.32 D.-32 答案 C 3.若sin θ·cos θ<0,tanθsinθ>0,则角θ是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 答案 D 4.若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=-3x上,则角α的取值集合是 ( ) A.α|α=2kπ-π3,k∈Z B.α|α=2kπ+2π3,k∈Z C.α|α=kπ-2π3,k∈Z D.α|α=kπ-π3,k∈Z 答案 D 5.已知扇形的周长为20 cm,当这个扇形的面积最大时,半径R的值为( ) A.4 cm B.5 cm C.6 cm D.7 cm 答案 B 6.已知sinπ2+θ+3cos(π-θ)=sin(-θ),则sin θcos θ+cos2θ=( ) A.15 B.25 C.35 D.55 答案 C 综合篇知能转换 【综合集训】 考法一 利用三角函数定义解题 1.(2018河南天一大联考,2)在平面直角坐标系xOy中,角α的终边经过点P(3,4),则sinα-2 017π2=( ) A.-45 B.-35 C.35 D.45 答案 B 2.(2018广东深圳四校期中联考,5)已知角θ的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边经过点(1,4),则cos2θ-sin 2θ的值为( ) A.35 B.-35 C.717 D.-717 答案 D 3.(2020届四川绵阳南山中学月考,4)已知角α的终边过点(-8m,-6sin 30°),且cos α=-45,则m的值为( ) A.±12 B.-12 C.12 D.32 答案 C 考法二 同角三角函数的基本关系式的应用技巧 4.(2018福建福州八校联考,8)已知sinα+3cosα2cosα-sinα=2,则cos2α+sin αcos α=( ) A.65 B.35 C.25 D.-35 答案 A 5.(2019河北邯郸重点中学3月联考,5)已知3sin33π14+α=-5cos5π14+α,则tan5π14+α=( ) A.-53 B.-35 C.35 D.53 答案 A 6.(2018湖北武汉调研,13)若tan α=cos α,则1sinα+cos4α= . 答案 2 考法三 利用诱导公式化简求值的思路和要求 7.(2020届广东珠海摸底测试,3)若角θ的终边过点(4,-3),则cos(π-θ)=( ) A.45 B.-45 C.35 D.-35 答案 B 8.(2018河北衡水中学2月调研,3)若cosπ2-α=23,则cos(π-2α)=( ) A.29 B.59 C.-29 D.-59 答案 D 9.(2018浙江名校协作体考试,13)已知sin-π2-αcos-7π2+α=1225,且0<α<π4,则sin α= ,cos α= . 答案 35;45 考法四 同角三角函数的基本关系和诱导公式的综合应用 10.(2019江西赣州五校协作体期中,15)已知角α终边上有一点P(1,2),则sin(2π-α)-sinπ2-αcos3π2+α+cos(π-α)= . 答案 -3 【五年高考】 考点 三角函数的概念、同角三角函数的基本关系及诱导公式 1.(2016课标Ⅲ,5,5分)若tan α=34,则cos2α+2sin 2α=( ) A.6425 B.4825 C.1 D.1625 答案 A 2.(2018课标Ⅱ,15,5分)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)= . 答案 -12 3.(2017北京,12,5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sin α=13,则cos(α-β)= . 答案 -79 4.(2018浙江,18,14分)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P-35,-45. (1)求sin(α+π)的值; (2)若角β满足sin(α+β)=513,求cos β的值. 解析 (1)由角α的终边过点P-35,-45得sin α=-45, 所以sin(α+π)=-sin α=45. (2)由角α的终边过点P-35,-45得cos α=-35, 由sin(α+β)=513得cos(α+β)=±1213. 由β=(α+β)-α得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665. 思路分析 (1)由三角函数的定义得sin α的值,由诱导公式得sin(α+π)的值. (2)由三角函数的定义得cos α的值,由同角三角函数的基本关系式得cos(α+β)的值,由两角差的余弦公式得cos β的值. 教师专用题组 考点 三角函数的概念、同角三角函数的基本关系及诱导公式 1.(2014大纲全国,3,5分)设a=sin 33°,b=cos 55°,c=tan 35°,则( ) A.a>b>c B.b>c>a C.c>b>a D.c>a>b 答案 C 2.(2011课标,5,5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos 2θ=( ) A.-45 B.-35 C.35 D.45 答案 B 【三年模拟】 一、单项选择题(每题5分,共50分) 1.(2020届吉林白城通榆一中月考,3)已知角α的终边过点(12,-5),则sin α+12cos α等于( ) A.-113 B.113 C.112 D.-112 答案 B 2.(2020届四川邻水实验学校月考,4)已知tan(π-θ)=3,则sinπ2+θ-cos(π-θ)sinπ2-θ-sin(π-θ)=( ) A.-1 B.-12 C.1 D.12 答案 D 3.(2020届吉林白城通榆一中月考,2)已知扇形OAB的圆心角为2 rad,其面积是8 cm2,则该扇形的周长是( ) A.8 cm B.4 cm C.82 cm D.42 cm 答案 C 4.(2020届宁夏银川一中月考,2)已知tan α=-3,α是第二象限角,则sinπ2+α=( ) A.-1010 B.-31010 C.105 D.255 答案 A 5.(2020届湖南长沙一中月考,8)如图,点A为单位圆上一点,∠xOA=π3,点A沿单位圆按逆时针方向旋转角α到点B-22,22,则sin α=( ) A.-2+64 B.2-64 C.2+64 D.-2+64 答案 C 6.(2019湖南衡阳一中月考,5)已知α是第三象限角,且cos α3=-cos α3,则α3是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 答案 C 7.(2018湖北襄阳四校3月联考,8)△ABC为锐角三角形,若角θ的终边过点P(sin A-cos B,cos A-sin C),则sinθ|sinθ|+cosθ|cosθ|+tanθ|tanθ|的值为( ) A.1 B.-1 C.3 D.-3 答案 B 8.(2019广东珠海四校联考,3)设a=sin 5π7,b=cos 2π7,c=tan 2π7,则( ) A.a查看更多
相关文章
- 当前文档收益归属上传用户