2018届高三数学一轮复习: 第5章 第3节 等比数列及其前n项和

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018届高三数学一轮复习: 第5章 第3节 等比数列及其前n项和

第三节 等比数列及其前n项和 ‎ [考纲传真] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.‎ ‎1.等比数列的有关概念 ‎(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为=q(n∈N*,q为非零常数).‎ ‎(2)等比中项:如果a,G,b成等比数列,那么G叫做a与b的等比中项.即G是a与b的等比中项⇒a,G,b成等比数列⇒G2=ab.‎ ‎2.等比数列的有关公式 ‎(1)通项公式:an=a1qn-1.‎ ‎(2)前n项和公式:‎ ‎3.等比数列的常用性质 ‎(1)通项公式的推广:an=am·qn-m(n,m∈N*).‎ ‎(2)若m+n=p+q=2k(m,n,p,q,k∈N*),则am·an=ap·aq=a;‎ ‎(3)若数列{an},{bn}(项数相同)是等比数列,则{λan},,{a},{an·bn},(λ≠0)仍然是等比数列;‎ ‎(4)在等比数列{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,…为等比数列,公比为qk.‎ ‎1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)‎ ‎(1)满足an+1=qan(n∈N*,q为常数)的数列{an}为等比数列.(  )‎ ‎(2)G为a,b的等比中项⇔G2=ab.(  )‎ ‎(3)若{an}为等比数列,bn=a2n-1+a2n,则数列{bn}也是等比数列.(  )‎ ‎(4)数列{an}的通项公式是an=an,则其前n项和为Sn=.‎ ‎[答案] (1)× (2)× (3)× (4)×‎ ‎2.(2017·广州综合测试(二))已知等比数列{an}的公比为-,则的值是(  )‎ A.-2        B.- C. D.2‎ A [==-2.]‎ ‎3.(2017·东北三省四市一联)等比数列{an}中,an>0,a1+a2=6,a3=8,则a6=(  )‎ A.64 B.128‎ C.256 D.512‎ A [设等比数列的首项为a1,公比为q,则由解得或(舍去),所以a6=a1q5=64,故选A.]‎ ‎4.(教材改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为__________.‎ ‎27,81 [设该数列的公比为q,由题意知,‎ ‎243=9×q3,q3=27,∴q=3.‎ ‎∴插入的两个数分别为9×3=27,27×3=81.]‎ ‎5.(2015·全国卷Ⅰ)在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和.若Sn=126,则n=__________.‎ ‎6 [∵a1=2,an+1=2an,‎ ‎∴数列{an}是首项为2,公比为2的等比数列.‎ 又∵Sn=126,∴=126,解得n=6.]‎ 等比数列的基本运算 ‎ (1)(2016·安徽皖江名校联考)已知Sn是各项为正数的等比数列{an}的前n项和,a2·a4=16,S3=7,则a8=(  )‎ A.32           B.64‎ C.128 D.256‎ ‎(2)已知数列{an}是递增的等比数列,a1+a4=9,a‎2a3=8,则数列{an}的前n项和等于__________.‎ ‎ 【导学号:01772183】‎ ‎(1)C (2)2n-1 [(1)∵{an}为等比数列,a2·a4=16,∴a3=4.∵a3=a1q2=4,S3=7,∴S2==3,∴(1-q2)=3(1-q),即3q2-4q-4=0,‎ ‎∴q=-或q=2.∵an>0,∴q=2,则a1=1,∴a8=27=128.‎ ‎(2)设等比数列的公比为q,则有 解得或 又{an}为递增数列,∴∴Sn==2n-1.]‎ ‎[规律方法] 1.等比数列的通项公式与前n项和公式共涉及五个量a1,n,q,an,Sn,一般可以“知三求二”,体现了方程思想的应用.‎ ‎2.在使用等比数列的前n项和公式时,应根据公比q的情况进行分类讨论,在运算过程中,应善于运用整体代换思想简化运算.‎ ‎[变式训练1] (1)在等比数列{an}中,a3=7,前3项和S3=21,则公比q的值为(  )‎ A.1 B.- C.1或- D.-1或 ‎(2)设等比数列{an}的前n项和为Sn,若‎27a3-a6=0,则=__________.‎ ‎(1)C (2)28 [(1)根据已知条件得 ‎②÷①得=3.‎ 整理得2q2-q-1=0,‎ 解得q=1或q=-.‎ ‎(2)由题可知{an}为等比数列,设首项为a1,公比为q,所以a3=a1q2,a6=a1q5,所以‎27a1q2=a1q5,所以q=3,由Sn=,得S6=,S3=,所以=·=28.]‎ 等比数列的判定与证明 ‎ (2016·全国卷Ⅲ)已知数列{an}的前n项和Sn=1+λan,其中λ≠0.‎ ‎(1)证明{an}是等比数列,并求其通项公式;‎ ‎(2)若S5=,求λ.‎ ‎[解] (1)证明:由题意得a1=S1=1+λa1,2分 故λ≠1,a1=,故a1≠0.3分 由Sn=1+λan,Sn+1=1+λan+1得an+1=λan+1-λan,‎ 即an+1(λ-1)=λan.5分 由a1≠0,λ≠0得an≠0,所以=.‎ 因此{an}是首项为,公比为的等比数列,‎ 于是an=n-1.7分 ‎(2)由(1)得Sn=1-n.9分 由S5=得1-5=,即5=.10分 解得λ=-1.12分 ‎[规律方法] 等比数列的判定方法 ‎(1)定义法:若=q(q为非零常数,n∈N*),则{an}是等比数列.‎ ‎(2)等比中项法:若数列{an}中,an≠0,且a=an·an+2(n∈N*),则数列{an}是等比数列.‎ ‎(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N*),则{an}是等比数列.‎ 说明:前两种方法是证明等比数列的常用方法,后者常用于选择题、填空题中的判定.‎ ‎[变式训练2] 设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2.‎ ‎(1)设bn=an+1-2an,证明:数列{bn}是等比数列;‎ ‎(2)求数列{an}的通项公式.‎ ‎[解] (1)证明:由a1=1及Sn+1=4an+2,‎ 有a1+a2=S2=4a1+2.‎ ‎∴a2=5,∴b1=a2-2a1=3.‎ 又 ‎①-②,得an+1=4an-4an-1(n≥2),‎ ‎∴an+1-2an=2(an-2an-1)(n≥2).3分 ‎∵bn=an+1-2an,∴bn=2bn-1(n≥2),‎ 故{bn}是首项b1=3,公比为2的等比数列.6分 ‎(2)由(1)知bn=an+1-2an=3·2n-1,‎ ‎∴-=,‎ 故是首项为,公差为的等差数列.9分 ‎∴=+(n-1)·=,‎ 故an=(3n-1)·2n-2.12分 等比数列的性质及应用 ‎ (1)(2016·安徽六安一中综合训练)在各项均为正数的等比数列{an}中,若am+1·am-1=2am(m≥2),数列{an}的前n项积为Tn,若T‎2m-1=512,则m的值为(  )‎ A.4 B.5‎ C.6 D.7‎ ‎(2)(2016·天津高考)设{an}是首项为正数的等比数列,公比为q,则“q<‎0”‎是“对任意的正整数n,a2n-1+a2n<‎0”‎的(  )‎ A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件 ‎(1)B (2)C [(1)由等比数列的性质可知am+1·am-1=a=2am(m≥2),所以am=2,即数列{an}为常数列,an=2,所以T‎2m-1=‎22m-1=512=29,即‎2m-1=9,所以m=5,故选B.‎ ‎(2)若对任意的正整数n,a2n-1+a2n<0,则a1+a2<0,又a1>0,所以a2<0,所以q=<0.若q<0,可取q=-1,a1=1,则a1+a2=1-1=0,不满足对任意的正整数n,a2n-1+a2n<0.所以“q<‎0”‎是“对任意的正整数n,a2n-1+a2n<‎0”‎的必要而不充分条件.故选C.]‎ ‎[规律方法] 1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q,则am·an=ap·aq”,可以减少运算量,提高解题速度.‎ ‎2.等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.‎ ‎[变式训练3] (1)(2017·合肥三次质检)在正项等比数列{an}中,a1 008·a1 009=,则lg a1+lg a2+…+lg a2 016=(  )‎ A.2 015 B.2 016‎ C.-2 015 D.-2 016‎ ‎(2)(2017·南昌一模)若等比数列的各项均为正数,前4项的和为9,积为,则前4项倒数的和为(  )‎ A. B. C.1 D.2‎ ‎(1)D (2)D [(1)lg a1+lg a2+…+lg a2 016=lg a‎1a2…a2 016=lg(a1 008·a1 009)1 008=lg1 008=lg1 008=-2 016,故选D.‎ ‎(2)由题意得S4==9,所以=.由a1·a1q·a1q2·a1q3=(aq3)2=得aq3=.由等比数列的性质知该数列前4项倒数的和为==·==2,故选D.]‎ ‎[思想与方法]‎ ‎1.方程的思想.等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)求解.‎ ‎2.函数的思想.通项公式an =a1qn-1可化为an=qn,因此an是关于n 的函数,即{an}中的各项所表示的点(n,an)在曲线y=qx上,是一群孤立的点.‎ ‎3.分类讨论思想.当q=1时,{an}的前n项和Sn=na1;当q≠1时,{an}的前n项和Sn==.等比数列的前n项和公式涉及对公比q的分类讨论,此处是常考易错点.‎ ‎[易错与防范]‎ ‎1.特别注意q=1时,Sn=na1这一特殊情况.‎ ‎2.由an+1=qan,q≠0,并不能立即断言{an}为等比数列,还要验证a1≠0.‎ ‎3.在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽视q=1这一特殊情形而导致解题失误.‎ ‎4.Sn,S2n-Sn,S3n-S2n未必成等比数列(例如:当公比q=-1且n为偶数时,Sn,S2n-Sn,S3n-S2n不成等比数列;当q≠-1或q=-1且n为奇数时,Sn,S2n-Sn,S3n-S2n成等比数列).‎
查看更多

相关文章

您可能关注的文档