专题40 抛物线-2018年高考数学(理)热点题型和提分秘籍
专题40 抛物线
2018年高考数学(理)热点题型和提分秘籍
【高频考点解读】
1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率)。
2.理解数形结合的思想。
3.了解抛物线的实际背景及抛物线的简单应用。
【热点题型】
热点题型一 抛物线的定义及标准方程
例1、【2017课标II,理16】已知是抛物线的焦点,是上一点,的延长线交轴于点。若为的中点,则 。
【答案】6
【解析】如图所示,不妨设点M位于第一象限,设抛物线的准线与轴交于点,作与点,与点,由抛物线的解析式可得准线方程为,则,在直角梯形中,中位线,由抛物线的定义有:,结合题意,有,故.
【变式探究】(1)已知点M(3,2),F为抛物线y2=2x的焦点,点P在该抛物线上移动,当|PM|+|PF|取最小值时,点P的坐标为________。
(2)已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是( )
A.相离 B.相交
C.相切 D.不确定
解析:(1)如下图,由定义知|PF|=|PE|,
故|PM|+|PF|=|PM|+|PE|≥|ME|≥|MN|=3。
显然,只有当点P在由点M向准线所作的垂线上时,距离之和最小,此时点P的坐标为(2,2)。
【提分秘籍】
与抛物线有关的最值问题的解题策略
该类问题一般情况下都与抛物线的定义有关。实现由点到点的距离与点到直线的距离的转化。
(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解。
(2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决。
(3)引入变量,建立目标函数,利用不等式或者函数性质求解。
【举一反三】
已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=( )
A.1 B.2 C.4 D.8
解析:由题意知抛物线的准线为x=-。因为|AF|=x0,根据抛物线的定义可得x0+=|AF|=x0,解得x0=1,故选A。
答案:A
热点题型二 抛物线的几何性质
例2、【2017课标1,理10】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为
A.16 B.14 C.12 D.10
【答案】A
【解析】设,直线的方程为,联
立方程,得,∴ ,同理直线与抛物线的交点满足,由抛物线定义可知
,当且仅当(或)时,取等号.
【变式探究】(1)已知双曲线-=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=( )
A.1 B. C.2 D.3
(2)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若=4,则|QF|=( )
A. B. C.3 D.2
【提分秘籍】
1.涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性。
2.求抛物线方程应注意的问题
(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种;
(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系;
(3)要注意参数p的几何意义是焦点到准线的距离,利用它的几何意义来解决问题。
【举一反三】
从抛物线x2=4y上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△MPF的面积为________。
解析:设P(x0,y0)。由题意知,抛物线的准线方程为y=-1,|PM|=|PF|=5,
∴y0=4,代入抛物线方程得|x0|=4。
∴S△MPF=|PM|·|x0|=×5×4=10。
答案:10
热点题型三 直线与抛物线的位置关系
例3.【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
【答案】(Ⅰ)方程为,抛物线C的焦点坐标为(,0),准线方程为.(Ⅱ)详见解析.
【解析】
(Ⅰ)由抛物线C: 过点P(1,1),得.
所以抛物线C的方程为.
抛物线C的焦点坐标为(,0),准线方程为.
(Ⅱ)由题意,设直线l的方程为(),l与抛物线C的交点为, .
由,得.
则, .
因为点P的坐标为(1,1),所以直线OP的方程为,点A的坐标为.
直线ON的方程为,点B的坐标为.
因为
,
所以.
故A为线段BM的中点.
【变式探究】已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9。
(1)求该抛物线的方程。
(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值。
解析:(1)由题意得直线AB的方程是y=2,
与y2=2px联立,从而有4x2-5px+p2=0,
所以x1+x2=。
由抛物线定义得|AB|=x1+x2+p=+p=9,
所以p=4,从而抛物线的方程是y2=8x。
(2)由p=4知4x2-5px+p2=0可化为x2-5x+4=0,
从而x1=1,x2=4,y1=-2,y2=4,
从而A(1,-2),B (4,4)。
设=(x3,y3)=(1,-2)+λ(4,4)
=(4λ+1,4λ-2),
又y=8x3,所以[2(2λ-1)]2=8(4λ+1),
即(2λ-1)2=4λ+1,解得λ=0或λ=2。
【提分秘籍】
解决直线与抛物线位置关系问题的常用方法
(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系。
(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式。
(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法。
提醒:涉及弦的中点、斜率时,一般用“点差法”求解。
【举一反三】
设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=( )
A. B.6 C.12 D.7
解析:抛物线C:y2=3x的焦点为F,所以AB所在的直线方程为y=,将y=代入y2=3x,消去y整理得x2-x+=0.设A(x1,y1),B(x2,y2),由根与系数的关系得
x1+x2=,由抛物线的定义可得|AB|=x1+x2+p=+=12,故选C。
答案:C
【高考风向标】
1.【2017课标1,理10】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为
A.16 B.14 C.12 D.10
【答案】A
【解析】设,直线的方程为,联立方程,得,∴ ,同理直线与抛物线的交点满足,由抛物线定义可知
,当且仅当(或)时,取等号.
2.【2017课标II,理16】已知是抛物线的焦点,是上一点,的延长线交轴于点。若为的中点,则 。
【答案】6
【解析】如图所示,不妨设点M位于第一象限,设抛物线的准线与轴交于点,作与点,与点,由抛物线的解析式可得准线方程为,则,在直角梯形中,中位线,由抛物线的定义有:,结合题意,有
,故.
3.【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
【答案】(Ⅰ)方程为,抛物线C的焦点坐标为(,0),准线方程为.(Ⅱ)详见解析.
【解析】
(Ⅰ)由抛物线C: 过点P(1,1),得.
所以抛物线C的方程为.
抛物线C的焦点坐标为(,0),准线方程为.
(Ⅱ)由题意,设直线l的方程为(),l与抛物线C的交点为, .
由,得.
则, .
因为点P的坐标为(1,1),所以直线OP的方程为,点A的坐标为.
直线ON的方程为,点B的坐标为.
因为
,
所以.
故A为线段BM的中点.
1. 【2016高考新课标1卷】已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )
(A) (B) (C) (D)
【答案】A
【解析】由题意知:双曲线的焦点在轴上,所以,解得,因为方程表示双曲线,所以,解得,所以的取值范围是,故选A.
4.【2016高考新课标2理数】已知是双曲线的左,右焦点,点在上,与轴垂直,,则的离心率为( )
(A) (B) (C) (D)2
【答案】A
5.【2016高考浙江理数】已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则( )
A.m>n且e1e2>1 B.m>n且e1e2<1 C.m
1 D.m0),以原点为圆心,双曲线的实半轴长为半径
长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为( )
(A)(B)(C)(D)
【答案】D
【解析】根据对称性,不妨设A在第一象限,
,∴,
∴,故双曲线的方程为,故选D.
13.【2016高考山东理数】已知双曲线E: (a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是_______.
【答案】2
【解析】假设点A在第一象限,点B在第二象限,则,,所以,,由,得离心率或(舍去),所以E的离心率为2.
14.【2016年高考北京理数】双曲线的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则_______________.
【答案】2
【解析】∵是正方形,∴,即直线方程为,此为双曲线的渐近线,因此,又由题意,∴,.故填:2.
27. 【2016高考上海理数】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
双曲线的左、右焦点分别为,直线过且与双曲线交于两点。
(1)若的倾斜角为,是等边三角形,求双曲线的渐近线方程;
(2)设,若的斜率存在,且,求的斜率.
【答案】(1).(2).
(2)由已知,,.
设,,直线.显然.
由,得.
因为与双曲线交于两点,所以,且.
设的中点为.
由即,知,故.
而,,,
所以,得,故的斜率为.
1.【2015高考福建,理3】若双曲线 的左、右焦点分别为,点在双曲线上,且,则 等于( )
A.11 B.9 C.5 D.3
【答案】B
【解析】由双曲线定义得,即,解得,故选B.
2.【2015高考四川,理5】过双曲线的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则( )
(A) (B) (C)6 (D)
【答案】D
【解析】双曲线的右焦点为,过F与x轴垂直的直线为,渐近线方程为,将代入得:.选D.
3.【2015高考广东,理7】已知双曲线:的离心率,且其右焦点,则双曲线的方程为( )
A. B. C. D.
【答案】B.
【解析】因为所求双曲线的右焦点为且离心率为,所以,,所以所求双曲线方程为,故选B.
4.【2015高考新课标1,理5】已知M()是双曲线C:上的一点,是C上的两个焦点,若,则的取值范围是( )
(A)(-,) (B)(-,)
(C)(,) (D)(,)
【答案】A
【解析】由题知,,所以= =,解得,故选A.
5.【2015高考湖北,理8】将离心率为的双曲线的实半轴长和虚半轴长同时增加个单位长度,得到离心率为的双曲线,则( )
A.对任意的, B.当时,;当时,
C.对任意的, D.当时,;当时,
【答案】D
【解析】依题意,,,
因为,由于,,,
所以当时,,,,,所以;
当时,,,而,所以,所以.
所以当时,;当时,.
6.【2015高考重庆,理10】设双曲线(a>0,b>0)的右焦点为1,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是 ( )
A、 B、
C、 D、
【答案】A
【解析】由题意,由双曲线的对称性知在轴上,设,由得,解得,所以,所以,因此渐近线的斜率取值范围是,选A.
7.【2015高考安徽,理4】下列双曲线中,焦点在轴上且渐近线方程为的是( )
(A) (B) (C) (D)
【答案】C
【解析】由题意,选项的焦点在轴,故排除,项的渐近线方程为,即,故选C.
8.【2015高考新课标2,理11】已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为( )
A. B. C. D.
【答案】D
9.【2015高考北京,理10】已知双曲线的一条渐近线为,则 .
【答案】
【解析】双曲线的渐近线方程为,,,则
10【2015高考湖南,理13】设是双曲线:的一个焦点,若上存在点,使线段的中点恰为其虚轴的一个端点,则的离心率为 .
【答案】.
【解析】根据对称性,不妨设,短轴端点为,从而可知点在双曲线上,
∴.
11.【2015高考浙江,理9】双曲线的焦距是 ,渐近线方程是 .
【答案】,.
【解析】由题意得:,,,∴焦距为,
渐近线方程为.
12.【2015高考上海,理9】已知点和的横坐标相同,的纵坐标是的纵坐标的倍,和的轨迹分别为双曲线和.若的渐近线方程为,则的渐近线方程为 .
【答案】
【解析】由题意得::,设,则,所以,即的渐近线方程为
13.【2015江苏高考,12】在平面直角坐标系中,为双曲线右支上的一个动点。若点到直线的距离大于c恒成立,则是实数c的最大值为 .
【答案】
【解析】设,因为直线平行于渐近线,所以点到直线的距离恒大于直线与渐近线之间距离,因此c的最大值为直线与渐近线之间距离,为。
1.(2014·湖北卷)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )
A. B. C.3 D.2
【答案】A
2.(2014·北京卷)设双曲线C经过点(2,2),且与-x2=1具有相同渐近线,则C的方程为________;渐近线方程为________.
【答案】-=1 y=±2x
【解析】设双曲线C的方程为-x2=λ,将(2,2)代入得-22=-3=λ,∴双曲线C的方程为-=1.令-x2=0得渐近线方程为y=±2x.
3.(2014·全国卷)已知双曲线C的离心率为2,焦点为F1,F2,点A在C上.若|F1A|=2|F2A|,则cos∠AF2F1=( )
A. B. C. D.
【答案】A
【解析】根据题意,|F1A|-|F2A|=2a,因为|F1A|=2|F2A|,所以|F2A|=2a,|F1A|=4a.又因为双曲线的离心率e==2,所以c=2a,|F1F2|=2c=4a,所以在△AF1F2中,根据余弦定理可得cos∠AF2F1===.
4.(2014·福建卷)已知双曲线E:-=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=-2x.
(1)求双曲线E的离心率.
(2)如图16,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且△OAB的面积恒为8.试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由.
图16
【解析】解:方法一:
(1)因为双曲线E的渐近线分别为y=2x,y=-2x,
所以=2,
所以=2,
故c=a,
从而双曲线E的离心率
e==.
(2)由(1)知,双曲线E的方程为-=1.
设直线l与x轴相交于点C.
当l⊥x轴时,若直线l与双曲线E有且只有一个公共点,则|OC|=a,|AB|=4a.又因为△OAB的面积为8,
所以|OC|·|AB|=8,
因此a·4a=8,解得a=2,
此时双曲线E的方程为-=1.
若存在满足条件的双曲线E,则E的方程只能为-=1.
以下证明:当直线l不与x轴垂直时,双曲线E:-=1也满足条件.
设直线l的方程为y=kx+m,依题意,得k>2或k<-2,则C.记A(x1,y1),B(x2,y2).
由得y1=,同理得y2=.
由S△OAB=|OC|·|y1-y2|,得
·=8,
即m2=4=4(k2-4).
由得(4-k2)x2-2kmx-m2-16=0.
因为4-k2<0,
所以Δ=4k2m2+4(4-k2)(m2+16)=-16(4k2-m2-16).
又因为m2=4(k2-4),
所以Δ=0,即l与双曲线E有且只有一个公共点.
因此,存在总与l有且只有一个公共点的双曲线E,且E的方程为-=1.
方法二:(1)同方法一.
(2)由(1)知,双曲线E的方程为-=1.
设直线l的方程为x=my+t,A(x1,y1),B(x2,y2).
依题意得-2或k<-2.
由得(4-k2)x2-2kmx-m2=0,
因为4-k2<0,Δ>0,所以x1x2=,
又因为△OAB的面积为8,
所以 |OA|·|OB|· sin∠AOB=8,又易知sin∠AOB=,
所以·=8,化简得x1x2=4.
所以=4,即m2=4(k2-4).
由(1)得双曲线E的方程为-=1,
由得(4-k2)x2-2kmx-m2-4a2=0.
因为4-k2<0,直线l与双曲线E有且只有一个公共点当且仅当Δ=4k2m2+4(4-k2)(m2+4a2)=0,
即(k2-4)(a2-4)=0,所以a2=4,
所以双曲线E的方程为-=1.
当l⊥x轴时,由△OAB的面积等于8可得l:x=2,又易知l:x=2与双曲线E:-=1有且只有一个公共点.
综上所述,存在总与l有且只有一个公共点的双曲线E,且E的方程为-=1.
5.(2014·广东卷)若实数k满足00,且x2=,y2=,从而|PQ|=2=2.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=.因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=.
又因为|y1-y2|==,所以2d=.
故四边形APBQ的面积S=|PQ|·2d==2·.
而0<2-m2≤2,故当m=0时,S取最小值2.
综上所述,四边形APBQ面积的最小值为2.
7.(2014·江西卷)如图17所示,已知双曲线C:-y2=1(a>0)的右焦点为F,点A,B分别在C的两条渐近线上,AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).
图17
(1)求双曲线C的方程;
(2)过C上一点P(x0,y0)(y0≠0)的直线l:-y0y=1与直线AF相交于点M,与直线x=相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值.
【解析】解:(1)设F(c,0),因为b=1,所以c=.
由题意,直线OB的方程为y=-x,直线BF的方程为y=(x-c),所以B.
又直线OA的方程为y=x,
则A,所以kAB==.
又因为AB⊥OB,所以·=-1,解得a2=3,故双曲线C的方程为-y2=1.
(2)由(1)知a=,则直线l的方程为-y0y=1(y0≠0),即y=(y0≠0).
因为直线AF的方程为x=2,所以直线l与AF的交点为M,直线l与直线x=的交点为N,,
则===
·.
又P(x0,y0)是C上一点,则-y=1,
代入上式得=·=·=,所以==,为定值.
8.(2014·新课标全国卷Ⅰ] 已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )
A. B.3
C.m D.3m
【答案】A
【解析】双曲线的一条渐近线的方程为x+y=0.根据双曲线方程得a2=3m,b2=3,所以c=,双曲线的右焦点坐标为(,0).故双曲线的一个焦点到一条渐近线的距离为=.
9.(2014·山东卷)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为-=1,C1与C2的离心率之积为,则C2的渐近线方程为( )
A. x±y=0 B. x±y=0
C. x±2y=0 D. 2x±y=0
【答案】A
10.(2014·天津卷)已知双曲线-=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
【答案】A
【解析】由题意知,双曲线的渐近线为y=±x,∴=2.∵双曲线的左焦点(-c,0)在直线l上,∴0=-2c+10,∴c=5.又∵a2+b2=c2,∴a2=5,b2=20,∴双曲线的方程为-=1.
【高考冲刺】
1.若抛物线y2=2px上一点P(2,y0)到其准线的距离为4,则抛物线的标准方程为( )
A.y2=4x B.y2=6x
C.y2=8x D.y2=10x
解析:由题意可知p>0,因为抛物线y2=2px,所以其准线方程为x=-,因为点P(2,y0)到其准线的距离为4,所以|--2|=4,所以p=4,故抛物线方程为y2=8x。故选C。
答案:C
2.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5。所以MF为直径的圆过点(0,2),则C的方程为( )
A.y2=4x或y2=8x B.y2=2x或y2=8x
C.y2=4x或y2=16x D.y2=2x或y2=16x
解析:由已知得抛物线的焦点F,设点A(0,2),抛物线上点M,则=,=。由已知得,·=0,即y-8y0+16=0,因而y0=4,M。
由|MF|=5得,=5,又p>0,解得p=2或p=8,故选C。
答案:C
3.已知抛物线y2=2px(p>0)的焦点为F,P,Q是抛物线上的两个点,若△PQF是边长为2的正三角形,则p的值是( )
A.2± B.2+
C.±1 D.-1
解析:F,设P,Q(y1≠y2)。由抛物线定义及|PF|=|QF|,得+=+,所以y=y,又y1≠y2,所以y1=-y2,所以|PQ|=2|y1|=2,|y1|=1,所以|PF|=+
=2,解得p=2±。
答案:A
4.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则k的值为( )
A. B.
C. D.
解析:
设抛物线C:y2=8x的准线为l:x=-2,直线y=k(x+2)(k>0)恒过定点P(-2,0),如图过A,B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点,连接OB,则|OB|=|FA|,所以|OB|=|BF|,点B的横坐标为1,故点B的坐标为(1,2),把B点坐标代入直线方程得k的值为。
答案:C
5.直线l经过抛物线y2=4x的焦点,且与抛物线交于A,B两点,若AB中点的横坐标为3,则线段AB的长为( )
A.5 B.6
C.7 D.8
6.如图,已知抛物线y2=2px(p>0)的焦点F恰好是双曲线-=1(a>0,b>0)的右焦点,且两条曲线交点的连线过点F,则该双曲线的离心率为( )
A. B.2
C.+1 D.-1
解析:由题意,因为两条曲线交点的连线过点F,
所以两条曲线的一个交点为,
代入双曲线方程得-=1,
又=c,
所以-4×=1,化简得c4-6a2c2+a4=0,
所以e4-6e2+1=0,
所以e2=3+2=(1+)2,
所以e=+1,
故选C。
答案:C
7.已知抛物线的顶点在原点,焦点在y轴上,抛物线上的点P(a,-2)到焦点的距离为3,则抛物线的方程是________。
解析:由题意可设抛物线的方程为x2=-2py(p>0),抛物线上的点P(a,-2)到焦点的距离即为点P到准线y=的距离,所以+2=3,解得p=2,所以抛物线的方程为x2=-4y。
答案:x2=-4y
8.已知直线y=a交抛物线y=x2于A,B两点。若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为________。
解析:设直线y=a与y轴交于M点,若抛物线y=x2上存在C点使得∠ACB=90°,只要以|AB|为直径的圆与抛物线y=x2有除A,B外的交点即可,即使|AM|≤|MO|,所以≤a,所以a≥1或a≤0,因为由题意知a>0,所以a≥1。
答案:[1,+∞)
9.已知抛物线y2=4x的准线与双曲线-=1(a>0,b>0)交于A,B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线离心率的取值范围是________。
10.已知曲线C上的动点P(x,y)满足到点F(0,1)的距离比到直线l:y=-2的距离小1。
(1)求曲线C的方程;
(2)动点E在直线l上,过点E分别作曲线C的切线EA,EB,切点为A,B。直线AB是否恒过定点,若是,求出定点坐标,若不是,请说明理由。
解析:(1)因为动点P(x,y)满足到点F(0,1)的距离比到直线l:y=-2的距离小1,所以动点P(x,y)满足到点F(0,1)的距离与直线l′:y=-1的距离相等。
所以曲线C是以F(0,1)为焦点,y=-1为准线的抛物线,所以曲线C的方程是:x2=4y。
(2)设E(a,-2),切点为,
由x2=4y得y=,
所以y′=,所以=,
解得:x0=a±,
所以A,
B,
化简直线AB方程得:
y-2=x,所以直线AB恒过定点(0,2)。
11.已知顶点在原点,焦点在y轴上的抛物线过点P(2,1)。
(1)求抛物线的标准方程。
(2)过点P作直线l与抛物线有且只有一个公共点,求直线l的方程。
(3)过点Q(1,1)作直线交抛物线于A,B两点,使得Q恰好平分线段AB,求直线AB的方程。
解析:(1)设抛物线的标准方程为x2=2py,把点P(2,1)代入可得4=2p,所以p=2,故所求的抛物线的标准方程为x2=4y。
(2)①当斜率不存在时,直线方程为x=2,符合题意;
②当斜率存在时,设直线方程为y-1=k(x-2),即y=kx-2k+1,
联立方程可得整理可得x2-4kx+8k-4=0。
因为直线与抛物线只有一个公共点,
所以Δ=16k2-32k+16=0,
所以k=1。
综上可得,直线l的方程为x-y-1=0或x=2。
(3)由题意可知,AB的斜率存在,设AB的方程为y-1=k′(x-1),代入抛物线的标准方程x2=4y可得x2-4k′x+4k′-4=0,所以x1+x2=4k′=2,
所以k′=,所以AB的方程为y-1=(x-1),
即x-2y+1=0。
12.已知抛物线C:y2=2px的焦点坐标为F(1,0),过F的直线交抛物线C于A,B两点,直线AO,BO分别与直线m:x=-2相交于M,N两点。
(1)求抛物线C的方程。
(2)证明△ABO与△MNO的面积之比为定值。
解析:(1)由焦点坐标为(1,0),可知=1,
所以p=2,所以抛物线C的方程为y2=4x。
(2)当直线AB垂直于x轴时,△ABO与△MNO相似,所以=2=,
当直线AB与x轴不垂直时,设直线AB方程为y=k(x-1),
设M(-2,yM),N(-2,yN),A(x1,y1),B(x2,y2),
由整理得k2x2-(4+2k2)x+k2=0,所以x1·x2=1,
所以==·
=·=·=,
综上=。