数学卷·2018届广东省普宁市华侨中学高二上学期第二次月考文数试题 (解析版)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

数学卷·2018届广东省普宁市华侨中学高二上学期第二次月考文数试题 (解析版)

全*品*高*考*网, 用后离不了!‎ 第Ⅰ卷(共60分)‎ 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.圆的圆心坐标和半径分别为( )‎ A.(0,2),2 B.(2,0),2 C.(-2,0),4 D.(2,0),4‎ ‎【答案】B ‎【解析】‎ 试题分析:圆变形为,所以圆心为,半径为2‎ 考点:圆的方程 ‎2.过点、点且圆心在直线上的圆的方程是( )‎ A. B. ‎ C. D.‎ ‎【答案】C ‎【解析】‎ 试题分析:设圆的方程为 考点:圆的方程 ‎3.下列四个命题中错误的个数是( )‎ ‎①垂直于同一条直线的两条直线相互平行;②垂直于同一个平面的两条直线相互平行;‎ ‎③垂直于同一条直线的两个平面相互平行;④垂直于同一个平面的两个平面相互平行.‎ A.1 B.2 C.3 D. 4‎ ‎【答案】B ‎【解析】‎ 试题分析:①中垂直于同一条直线的两条直线相互平行或相交或异面;②正确;③正确;④中垂直于同一个平面的两个平面相互平行或相交 考点:空间线面的位置关系 ‎4.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥侧面积是( )‎ ‎ ‎ A. B. C. D.8‎ ‎【答案】A ‎【解析】‎ 试题分析:一个四棱锥的侧棱长都相等,底面是正方形,‎ 所以:该四棱锥为为正四棱锥.‎ 其正(主)视图如图所示,‎ 则:下底面正方形的边长为2,四棱锥的高为2,‎ 四棱锥的侧面的高为:,‎ 则:四棱锥的侧面积:‎ 考点:三视图及几何体表面积 ‎5.设,则“”是“,且”的( )‎ A.充分而不必要条件 B.必要而不充分条件 ‎ C.充分必要条件 D.既不充分也不必要条件 ‎【答案】B ‎【解析】‎ 试题分析:由,且可得到,反之不成立,所以“”是“,且”的必要而不充分条件 考点:充分条件与必要条件 ‎6.已知下列三个命题:‎ ‎①棱长为2的正方体外接球的体积为;‎ ‎②如果将一组数据中的每一个数都加上同一个非零常数,那么这组数据的平均数和方差都改变;‎ ‎③直线被圆截得的弦长为.‎ 其中真命题的序号是( )‎ A.①② B.②③ C. ①③ D.①②③‎ ‎【答案】C ‎【解析】‎ 试题分析::①设正方体的外接球的半径为r,则2r=2,r=,则球的体积为πr3= π×3=,故①正确;‎ ‎②设一组数据为,它的平均数为a,方差为b,则另一组数据(c≠0),运用公式即可得,其平均数为a+c,方差为b,故②错;‎ ‎③圆(x-1)2+y2=4的圆心为(1,0),半径为2,直线x-y+1=0到圆的距离为,则直线被圆截得的弦长为,故③正确 考点:命题的真假判断与应用 ‎7.圆上到直线的距离为的点共有( )‎ A.1个 B.2个 C. 3个 D.4个 ‎【答案】C ‎【解析】‎ 试题分析:圆的方程为,圆心为,半径为,圆心到直线的距离为,结合图形可知距离为的点共有3个 考点:圆和直线的位置关系 ‎8.无穷等比数列中,“”是“数列为递减数列”的( )‎ A.充分而不必要条件 B.充分必要条件 C.必要而不充分条件 D.既不充分也不必要条件 ‎【答案】C ‎【解析】‎ 试题分析:由数列为递减数列可知,反之不成立,所以“”是“数列为递减数列”的必要而不充分条件 考点:充分条件与必要条件 ‎9.一个三棱锥的三条侧棱两两互相垂直,且长度分别为1、、3,则这个三棱锥的外接球的表面积为( )‎ A. B. C. D.‎ ‎【答案】A ‎【解析】‎ 试题分析:三棱锥P-ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它 扩展为长方体的外接球,求出长方体的对角线的长:‎ 所以球的直径是4,半径为2,球的表面积:16π 考点:球的体积和表面积 ‎10.已知圆,从点发出的光线,经轴反射后恰好经过圆心,则入射光线的斜率为( )‎ A. B. C. D.‎ ‎【答案】C ‎【解析】‎ 试题分析:根据反射定律,圆心C(2,-1)关于x轴的对称点D(2,1)在入射光线上,‎ 再由点P(-1,-3)也在入射光线上,可得入射光线的斜率为 考点:与直线关于点、直线对称的直线方程 ‎11.已知圆,直线上至少存在一点,使得以点为原心,半径为1的圆与圆有公共点,则的最小值是( )‎ A. B. C. D.‎ ‎【答案】A ‎【解析】‎ 试题分析::∵圆C的方程为,整理得:,即圆C是以(4,0)为圆心,1为半径的圆;‎ 又直线y=kx+2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,‎ ‎∴只需圆C′:与直线y=kx+2有公共点即可.‎ 设圆心C(4,0)到直线y=kx+2的距离为d,‎ 则,即,‎ ‎∴≤k≤0.‎ ‎∴k的最小值是.‎ 考点:直线与圆的位置关系 ‎12.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )‎ A. B. C. D.‎ ‎【答案】D ‎【解析】‎ 试题分析:由题意可得,蛋巢的底面是边长为1的正方形,故经过4个顶点截鸡蛋所得的截面圆的直径为1,‎ 由于鸡蛋的表面积为4π,故鸡蛋(球)的半径为1,故球心到截面圆的距离为 ‎,‎ 而垂直折起的4个小直角三角形的高为,‎ 故鸡蛋中心(球心)与蛋巢底面的距离为 考点:点、线、面间的距离计算 第Ⅱ卷(共90分)‎ 二、填空题(每题5分,满分20分,将答案填在答题纸上)‎ ‎13.将一张坐标纸折叠一次,使点与点重合,且点与点重合,则的值是 ‎ ‎【答案】‎ ‎【解析】‎ 考点:直线的点斜式方程 ‎14.已知圆的方程为,过点的直线与圆交于两点,若使最小则直线的方程是 .‎ ‎【答案】‎ ‎【解析】‎ 试题分析:圆C的方程为x2+y2-2y-3=0,即 x2+(y-1)2=4,表示圆心在C(0,1),半径等于2的圆.‎ 点P(-1,2)到圆心的距离等于,小于半径,故点P(-1,2)在圆内.‎ ‎∴当AB⊥CP时,|AB|最小,‎ 此时,kCP =-1,kl =1,用点斜式写直线l的方程y-2=x+1,‎ 即x-y+3=0‎ 考点:直线与圆相交的性质;直线的一般式方程 ‎15.如果实数满足等式,那么的最大值是 ‎ ‎【答案】‎ ‎【解析】‎ 试题分析:设 代入得 ‎ 由得,的最大值是 考点:直线和圆的位置关系 ‎16.方程有两个不等实根,则的取值范围是 ‎【答案】‎ ‎【解析】‎ 试题分析:作函数与直线y=k(x-2)+3的图象如下,‎ 函数的图象是半圆,直线y=k(x-2)+3的图象恒过点(2,3);‎ 结合图象可知,‎ 当过点(-2,0)时,,‎ 当直线y=k(x-2)+3与半圆相切时,‎ ‎,‎ 解得,k=,‎ 故k的取值范围是 考点:根的存在性及根的个数判断 三、解答题 (本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) ‎ ‎17.(本小题满分10分)求经过点的直线,且使到它的距离相等的直线方程.‎ ‎【答案】或 ‎【解析】‎ 试题分析:由题意可知所求直线与已知直线平行或过线段AB的中点,分情况求解直线方程 试题解析:显然符合条件: 当在所求直线同侧时,, 或.‎ 考点:直线方程 ‎18.已知命题,命题,若是的必要不充分条件,求实数的取值范围.‎ ‎【答案】0<m≤3‎ ‎【解析】‎ 试题分析:由已知中命题p:,我们易求出x的取值范围,又同命题q:1-m≤x≤1+m,m>0,若命题p是命题q的必要不充分条件,我们根据“谁小谁充分,谁大谁必要”的原则,我们易得一个关于m的不等式,解不等式即可得到实数m的取值范围 试题解析:∵命题p:‎ ‎∴p:x∈,‎ 又∵q:x∈,m>0,‎ ‎∵命题p是命题q的必要不充分条件,‎ ‎∴⊋.‎ ‎∴‎ ‎∴0<m≤3‎ 考点:必要条件;必要条件、充分条件与充要条件的判断 ‎19.已知,设命题函数为减函数,命题当时,函数恒成立.如果或为真命题,且为假命题,求的取值范围.‎ ‎【答案】‎ ‎【解析】‎ 考点:命题的真假判断与应用 ‎20.若是不全相等的正数,求证:.‎ ‎【答案】详见解析 ‎【解析】‎ 试题分析:不等式的证明可采用分析法和综合法,本题中证明时不等式性质和不等式的加法性质证明不等式 试题解析:∵,‎ ‎∴,‎ 又上述三个不等式中等号不能同时成立.‎ ‎∴成立.‎ 上式两边同时取常用对数,‎ 得,‎ ‎∴.‎ 考点:不等式证明 ‎21.设数列的前项和为,并且满足. 猜想的通项公式,并用数学归纳法加以证明.‎ ‎【答案】‎ ‎【解析】‎ 试题分析:分别令n=1,2,3,列出方程组,能够求出求;猜想:,由可知,当n≥2时,,所以,再用数学归纳法进行证明;‎ 试题解析:(1)解:分别令,得,‎ ‎∵,∴,猜想:,由①‎ 可知,当时②‎ ‎①-②得,即 当时 ‎∵,∴,‎ ‎(ii)假设当时,,那么当时,,∵,‎ ‎∴,∴,即当时也成立.‎ ‎∴,显然时,也成立,故对于一切,均有.‎ 考点:数列通项公式及数学归纳法证明 ‎ ‎
查看更多

相关文章

您可能关注的文档